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We present Distill, a simple and effective scalable architecture designed
for modelling protein Cα traces based on predicted structural features.
Distill targets those chains for which no significant sequential or struc-
tural resemblance to any entry of the Protein Data Bank (PDB) can be
detected. Distill is composed of: (1) a set of state-of-the-art predictors
of protein structural features based on statistical learning techniques
and trained on large, non-redundant subsets of the PDB; (2) a simple
and fast 3D reconstruction algorithm guided by a pseudo-energy defined
according to these predicted features.

At CASP6, a preliminary implementation of the system was ranked
in the top 20 predictors in the Novel Fold hard target category. Here we
test an improved version on a non-redundant set of 258 protein structures
showing no homology to the sets employed to train the machine learning
modules. Results show that the proposed method can generate topolog-
ically correct predictions, especially for relatively short (up to 100-150
residues) proteins. Moreover, we show how our approach makes genomic
scale structural modelling tractable by solving hundreds of thousands of
protein coordinates in the order of days.

1. Introduction

Of the nearly two million protein sequences currently known, only about

10% are human-annotated, while for fewer than 2% has the three-

dimensional (3D) structure been experimentally determined. Attempts to
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predict protein structure from primary sequence have been carried out for

decades by an increasingly large number of research groups.

Experiments of blind prediction such as the CASP series1,2,3,4 demon-

strate that the goal is far from being achieved, especially for those proteins

for which no resemblance exists, or can be found, to any structure in the

PDB5 - the field known as ab initio prediction. In fact, as reported in the

last CASP competition results4 for the New Fold (NF) category, even the

best predicted models have only fragments of the structure correctly mod-

elled and poor average quality. Reliable identification of the correct native

fold is still a long-term goal. Nevertheless, improvements observed over the

last few years suggest that ab initio generated low-resolution models may

prove to be useful for other tasks of interest. For instance, efficient ab ini-

tio genomic scale predictions can exploited to quickly identify similarity in

structure and functions of evolutionary distant proteins6,7.

Here we describe Distill, a fully automated computational system for

ab initio prediction of protein Cα traces. Distill’s modular architecture is

composed of: (1) a set of state-of-the-art predictors of protein features (sec-

ondary structure, relative solvent accessibility, contact density, residue con-

tact maps, contact maps between secondary structure elements) based on

machine learning techniques and trained on large, non-redundant subsets

of the PDB; (2) a simple and fast 3D reconstruction algorithm guided by

a pseudo- energy defined according to these predicted features.

A preliminary implementation of Distill showed encouraging results at

CASP6, with model 1 in the top 20 predictors out of 181 for GDT TS on

Novel Fold hard targets, and for Z-score for all Novel Fold and Near Novel

Fold targets6. Here we test a largely revised and improved version of Distill

on a non-redundant set of 258 protein structures showing no homology to

the sets employed to train the machine learning modules. Results show

that Distill can generate topologically correct predictions for a significant

fraction of short proteins (150 residues or fewer).

This paper is organised as follows: in section 2 we describe the various

structural features predicted; in section 3 we describe in detail the statis-

tical learning methods adopted in all the feature predictors; in section 4

we discuss overall architecture of the predictive pipeline and the imple-

mentation and performances of the individual predictors; in section 5 we

introduce the 3D reconstruction algorithm; finally in section 6 we describe

the results of benchmarking Distill on a non-redundant set of 258 protein

structures.
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2. Structural Features

We call protein one-dimensional structural features (1D) those aspects of

a protein structure that can be represented as a sequence. For instance, it

is known that a large fraction of proteins is composed by a few well de-

fined kinds of local regularities maintained by hydrogen bonds: helices and

strands are the most common ones. These regularities, collectively known

as protein secondary structure, can be represented as a string out of an

alphabet of 3 (helix, strand, the rest) or more symbols, and of the same

length of the primary sequence. Predicting 1D features is a very appealing

problem, partly because it can be formalised as the translation of a string

into another string of the same length, for which a vast machinery of tools

for sequence processing is available, partly because 1D features are consid-

ered a valuable aid to the prediction of the full 3D structure. Several public

web servers for the prediction of 1D features are available today, almost all

based on machine learning techniques. The most popular of these servers
8,9,10,11 process hundreds of queries daily. Less work has been carried out

on protein two-dimensional structural features (2D), i.e. those aspects of

the structure that can be represented as two-dimensional matrices. Among

these features are contact maps, strand pairings, cysteine-cysteine bonding

patterns. There is intrinsic appeal in these features since they are simpler

than the full 3D structure, but retain very substantial structural informa-

tion. For example it has been shown 12 that correct residue contact maps

generally lead to correct 3D structures.

In the remainder of this section we will describe the structural features

predicted by our systems.

2.1. One-dimensional structural features

2.1.1. Secondary structure

Protein secondary structure is the complex of local regularities in a protein

fold that are maintained by hydrogen bonds. Protein secondary structure

prediction is an important stage for the prediction of protein structure and

function. Accurate secondary structure information has been shown to im-

prove the sensitivity of threading methods (e.g. 13) and is at the core of

most ab initio methods (e.g. see 14) for the prediction of protein structure.

Virtually all modern methods for protein secondary structure prediction are

based on machine learning techniques8,10, and exploit evolutionary infor-

mation in the form of profiles extracted from alignments of multiple homol-

ogous sequences. The progress of these methods over the last 10 years has
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been slow, but steady, and is due to numerous factors: the ever-increasing

size of training sets; more sensitive methods for the detection of homo-

logues, such as PSI-BLAST15; the use of ensembles of multiple predictors

trained independently, sometimes tens of them16; more sophisticated ma-

chine learning techniques (e.g. 10).

Distill contains the state-of-the-art secondary structure predictor

Porter11, described in section 4.

2.1.2. Solvent Accessibility

Solvent accessibility represents the degree to which amino acids in a pro-

tein structure interact with solvent molecules. The accessible surface of each

residue is normalised between a minimum and a maximum value for each

type of amino acid, and then reassigned to a number of classes (e.g. buried

vs exposed), or considered as such. A number of methods have been devel-

oped for solvent accessibility prediction, the most successful of which based

on statistical learning algorithms 17,18,19,20,21. Within DISTILL we have de-

veloped a novel state-of-the-art predictor of solvent accessibility in 4 classes

(buried, partly buried, partly exposed, exposed), described in section 4.

2.1.3. Contact Density

The contact map of a protein with N amino acids is a symmetric N × N

matrix C, with elements Cij defined as:

Cij =

{

1 if amino acid i and j are in contact

0 otherwise
(1)

We define two amino acids as being in contact if their mutual distance is

less than a given threshold. Alternative definitions are possible, for instance

based on different mutual Cα distances (normally in the 7-12 Å range), or

on Cβ−Cβ atom distances (normally 6.5-8 Å), or on the minimal distance

between two atoms belonging to the side-chain or backbone of the two

residues (commonly 4.5 Å).

Let λ(C) = {λ : Cx = λx} be the spectrum of C, Sλ = {x : Cx = λx}

the corresponding eigenspace and λ̄ = max{λ ∈ λ(C)} the largest eigen-

value of C. The principal eigenvector of C, x̄, is the eigenvector corre-

sponding to λ̄. x̄ can also be expressed as the argument which maximises

the Rayleigh quotient:

∀x ∈ Sλ :
xT Cx

xT x
≤

x̄T Cx̄

x̄T x̄
(2)



February 6, 2006 12:13 WSPC/Trim Size: 9in x 6in for Review Volume PollastriBauVullo˙chapter

Distill: A Machine Learning Approach to Ab Initio Protein Structure Prediction 5

Eigenvectors are usually normalised by requiring their norm to be 1, e.g.

‖x‖2 = 1 ∀x ∈ Sλ. Since C is an adjacency (real, symmetric) matrix,

its eigenvalues are real. Since it is a normal matrix (AHA = AAH), its

eigenvectors are orthogonal. Other basic properties can also be proven: the

principal eigenvalue is positive; non-zero components of x̄ have all the same

sign 22. Without loss of generality, we can assume they are positive, as in
23. We define a protein’s Contact Density as the principal eigenvector of its

residue contact map, multiplied by its corresponding eigenvalue: λ̄x̄.

Contact Density is a sequence of the same length as a protein’s primary

sequence. Recently 23 a branch-and-bound algorithm was described that

is capable of reconstructing the contact map from the exact PE, at least

for single domain proteins of up to 120 amino acids. Predicting Contact

Densities is thus interesting: as one-dimensional features, they are signifi-

cantly more tractable than full contact maps; nonetheless a number of ways

to obtain contact maps from contact densities may be devised, including

modifying the reconstruction algorithm in 23 to deal with noise, or adding

Contact Densities as an additional input feature to systems for the direct

prediction of contact maps (such as 24). Moreover, Contact Densities are

informative in their own right and may be used to guide the search for

optimal 3D configurations, or to identify protein domains 25,26. Contacts

among residues, in fact, constrain protein folding and characterise different

protein structures (see Figure 1), constituting a structural fingerprint of

the given protein27.

Distill contains a state-of-the-art Contact Density predictor 28.

2.2. Two-dimensional structural features

2.2.1. Contact Maps

Contact maps (see definition above), or similar distance restraints have

been proposed as intermediate steps between the primary sequence and the

3D structure (e.g. in 29,30,24), for various reasons: unlike 3D coordinates,

they are invariant to rotations and translations, hence less challenging to

predict by machine learning systems 24,31; quick, effective algorithms exist

to derive 3D structures from them, for instance stochastic optimisation

methods 12,32, distance geometry 33,34, or algorithms derived from the NMR

literature and elsewhere 35,36,37. Numerous methods have been developed

for protein residue contact map prediction 29,30,24,38 and coarse (secondary

structure element level) contact map prediction 31, and some improvements

are slowly occurring (e.g. in 38, as shown by the CASP6 experiment 39).
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Fig. 1. Different secondary structure elements like helices (thick bands along
the main diagonal) and parallel − or anti-parallel − β-sheets (thin bands parallel
− or anti-parallel − to the main diagonal) are easily detected from the contact map.

Accurate prediction of residue contact maps is far from being achieved

and limitations of existing prediction methods have again emerged at

CASP6 and from automatic evaluation of structure prediction servers such

as EVA 40. There are various reasons for this: the number of positive and

negative examples (contacts vs. non contacts) is strongly unbalanced; the

number of examples grows with the squared length of the protein making

this a tough computational challenge; capturing long ranged interactions in

the primary sequence is difficult, hence grasping an adequate global picture

of the map is a formidable problem.

The Contact Map predictor included in Distill relies on a combination

of one-dimensional features as inputs and is state-of-the-art 28.
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2.2.2. Coarse Topologies

We define the coarse structure of a protein as the set of three-dimensional

coordinates of the N- and C-terminus of its secondary structure segments

(helices, strands). By doing so, we: ignore coil regions, which are normally

more flexible than helices and strands; assume that both strands and helices

can be represented as rigid rods.

The actual coarse topology of a protein may be represented in a number

of alternative ways: the map of distances, thresholded distances (contacts),

or multi-class discretised distances between the centers of secondary struc-

tures 31,41; the map of angles between the vectors representing secondary

structure elements, or some discretisation thereof 41. In each of these cases,

if a protein contains M secondary structure elements, its coarse represen-

tation will be a matrix of M × M elements.

Although coarse maps are simpler, less informative representations of a

protein structure than residue- or atom-level contact maps, they nonetheless

can be exploited for a number of tasks, such as the fast reconstruction of

coarse structures 41 and the rapid comparison and classification of proteins

into structural classes 42.

Coarse contact maps represent compact sets of constraints and hence

clear and synthetic pictures of the shape of a fold. For this reason, it is much

less challenging to observe, and predict, long-range interactions between

elements of a protein structure within a coarse model than in a finer one: a

typical coarse map is composed by only hundreds of elements on a grid of

tens by tens of secondary structure elements, while a residue-level contact

map can contain hundreds of thousands or millions of elements and can

typically be modelled only locally by statistical learning techniques.

For this reason, coarse maps can not only yield a substantial information

compression with respect to residue maps, but can also assist in detecting

interactions that would normally be difficult to observe at a finer scale, and

contribute to improving residue maps, and structure predictions.

Distill contains predictors of coarse contact, multi-class distance and

multi-class angle maps 41.

3. Review of Statistical Learning Methods Applied

3.1. RNNs for undirected graphs

A data structure is a graph whose nodes are marked by sets of domain

variables, called labels. A skeleton class, denoted by the symbol #, is a set

of unlabelled graphs that satisfy some topological conditions. Let I and O
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denote two label spaces: I# (resp. O#) refers to the space of data struc-

tures with vertex labels in I (resp. O) and topology #. Recursive models

such as RNNs 43 can be employed to compute functions T : I# → O#

which map a structure into another structure of the same form but possi-

bly different labels. In the classical framework, # is contained in the class

of bounded DPAGs, i.e Directed Acyclic Graphs (DAGs) where each vertex

has bounded outdegree (number of outgoing edges) and whose children are

ordered. Recursive models normally impose causality on data processing:

the state variables (and outputs) associated to a node depend only on the

nodes upstream (i.e. from which a path leads to the node in question). The

above assumption is restrictive in some domains and extensions of these

models for dealing with more general undirected structures have been pro-

posed 44,24,45.

A more general assumption is considered here: # is contained in the class

of bounded-degree undirected graphs. In this case, there is no concept of

causality and the computational scheme described in 43 cannot be directly

applied. The strategy consists in splitting graphical processing into a set of

causal “dynamics”, each one computed over a plausible orientation of U .

More formally, assume U = (V, E) ∈ I# has one connected component.

We identify a set of spanning DAGs G1, . . . , Gm with Gi = (V, Ei) such

that:

• the undirected version of Gi is U

• ∀ v, u ∈ V v 6= u ∃ i : (v, u) ∈ E?
i being E?

i the transitive closure

of Ei

and for each Gi, introduce a state variable Xi computed in the usual way.

Fig.2 (left) shows a compact description of the set of dependencies among

the input, state and output variables.

Connections run from vertices of the input structure (layer I) to vertices

of the spanning DAGs and from these nodes to nodes of the output structure

(layer O).

Using weight-sharing, the overall model can be summarized by m +

1 distinct neural networks implementing the output function O(v) =

g(X1(v), . . . , Xm(v), I(v)) and m state transition functions Xi(v) =

fi(Xi(ch1[v]), . . . , Xi(chk[v]), I(v)). Learning can proceed by gradient-

descent (back-propagation) due to the acyclic nature of the underlying

graph. Within this framework, we can easily describe all contextual RNNs

architecture developed so far. Fig.2 (center) shows that an undirected se-

quence is spanned by two sequences oriented in opposite directions. We
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Fig. 2. (left): Contextual RNNs, dependencies among input, state and output variables.
(center and right): processing of undirected sequences and grids with contextual RNNs
(only a subset of connections are shown).

then obtain bi-directional recurrent neural networks 44 or 1D DAG-RNNs

if we consider a straightforward generalisation from sequences to undirected

graphs. For the case of two dimensional objects (e.g. contact maps), they

can be seen as two-dimensional grids spanned by four directed grids ori-

ented from each cardinal corner (Fig.2, right). The corresponding model

is called 2D DAG-RNNs 24. The 1D and 2D DAG-RNNs adopted in our

architectures are described in more detail below.

3.2. 1D DAG-RNN

In the 1D DAG-RNNs we adopt, connections along the forward and back-

ward hidden chains span more than 1-residue intervals, creating shorter

paths between inputs and outputs. These networks take the form:

oj = N (O)
(

ij , h
(F )
j , h

(B)
j

)

h
(F )
j = N (F )

(

ij , h
(F )
j−1, . . . , h

(F )
j−S

)

h
(B)
j = N (B)

(

ij , h
(B)
j+1, . . . , h

(B)
j+S

)

j = 1, . . . , N

where h
(F )
j and h

(B)
j are forward and backward chains of hidden vectors

with h
(F )
0 = h

(B)
N+1 = 0. We parametrise the output update, forward up-

date and backward update functions (respectively N (O), N (F ) and N (B))

using three two-layered feed-forward neural networks. In our tests the in-

put associated with the j-th residue ij contains amino acid information,

and further one-dimensional information in some predictors (see section 4

for details). In all cases amino acid information is obtained from multiple
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sequence alignments of the protein sequence to its homologues to leverage

evolutionary information. The input presented to the networks is the fre-

quency of each of the non-gap symbols, plus the overall frequency of gaps in

each column of the alignment. I.e., if njk is the total number of occurrences

of symbol j in column k, and gk the number of gaps in the same column,

the jth input to the networks in position k is:

njk
∑u

v=1 nvk
(3)

for j = 1 . . . u, where u is the number of non-gap symbols while the u +1th

input is:

gk

gk +
∑u

v=1 nvk
(4)

In some of our predictors we also adopt a second filtering 1D DAG-RNN
11. The network is trained to predict the structural feature given first-

layer structural feature predictions. The i-th input to this second network

includes the first-layer predictions in position i augmented by first stage

predictions averaged over multiple contiguous windows. I.e., if cj1, . . . cjm

are the outputs in position j of the first stage network corresponding to

estimated probability of residue j being labelled in class m, the input to

the second stage network in position j is the array Ij :

Ij = (cj1, . . . , cjm, (5)

k
−p+w
∑

h=k
−p−w

ch1, . . . ,

k
−p+w
∑

h=k
−p−w

chm,

. . .
kp+w
∑

h=kp−w

ch1, . . . ,

kp+w
∑

h=kp−w

chm)

where kf = j + f(2w + 1), 2w + 1 is the size of the window over which

first-stage predictions are averaged and 2p + 1 is the number of windows

considered. In the tests we use w = 7 and p = 7. This means that 15

contiguous, non-overlapping windows of 15 residues each are considered,

i.e. first-stage outputs between position j − 112 and j + 112, for a total of

225 contiguous residues, are taken into account to generate the input to the

filtering network in position j.
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3.2.1. Ensembling 1D DAG-RNNs

A few two-stage 1D DAG-RNN models are trained independently and en-

semble averaged to build each final predictor. Differences among models

are introduced by two factors: stochastic elements in the training protocol,

such as different initial weights of the networks and different shuffling of

the examples; different architecture and number of free parameters of the

models.

In 16 a slight improvement in secondary structure prediction accuracy

was obtained by “brute ensembling” of several tens of different models

trained independently. Here we adopt a less expensive technique: a copy of

each of the models is saved at regular intervals (100 epochs) during training.

Stochastic elements in the training protocol (similar to that described in
10) guarantee that differences during training are non-trivial.

3.3. 2D DAG-RNN

All systems for the prediction of two-dimensional structural features are

based on 2D DAG-RNN, described in 24 and 31. This is a family of adaptive

models for mapping two-dimensional matrices of variable size into matrices

of the same size.

We adopt 2D DAG-RNNs with shortcut connections, i.e. where lateral

memory connections span N -residue intervals, where N > 1. If oj,k is the

entry in the j-th row and k-th column of the output matrix, and ij,k is the

input in the same position, the input-output mapping is modelled as:

oj,k = N (O)
(

ij,k, h
(1)
j,k , h

(2)
j,k , h

(3)
j,k , h

(4)
j,k

)

h
(1)
j,k = N (1)

(

ij,k, h
(1)
j−1,k, .., h

(1)
j−S,k, h

(1)
j,k−1, .., h

(1)
j,k−S

)

h
(2)
j,k = N (2)

(

ij,k, h
(2)
j+1,k, .., h

(2)
j+S,k, h

(2)
j,k−1, .., h

(2)
j,k−S

)

h
(3)
j,k = N (3)

(

ij,k, h
(3)
j+1,k, .., h

(3)
j+S,k, h

(3)
j,k+1, .., h

(3)
j,k+S

)

h
(4)
j,k = N (4)

(

ij,k, h
(4)
j−1,k, .., h

(4)
j−S,k, h

(4)
j,k+1, .., h

(4)
j,k+S

)

j, k = 1, . . . , N

where h
(n)
j,k for n = 1, . . . , 4 are planes of hidden vectors transmitting con-

textual information from each corner of the matrix to the opposite corner.

We parametrise the output update, and the four lateral update functions

(respectively N (O) and N (n) for n = 1, . . . , 4) using five two-layered feed-

forward neural networks, as in 31.
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In our tests the input ij,k contains amino acid information, and struc-

tural information from one-dimensional feature predictors. Amino acid in-

formation is again obtained from multiple sequence alignments.

4. Predictive Architecture

In this section we briefly describe the individual predictors composing Dis-

till. Currently we adopt three predictors of one-dimensional features: Porter

(secondary structure), PaleAle (solvent accessibility), BrownAle (contact

density); and two predictors of two-dimensional features: XStout (coarse

contact maps/topologies); XXStout (residue contact maps). The overall

pipeline is highlighted in figure 3.

Fig. 3. Distill’s modelling scheme (http://distill.ucd.ie).
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4.1. Data set generation

All predictors are trained on dataset extracted from the December 2003

25% pdb select listb. We use the DSSP program 46 (CMBI version) to assign

target structural features and remove sequences for which DSSP does not

produce an output due, for instance, to missing entries or format errors.

After processing by DSSP, the set contains 2171 protein and 344,653 amino

acids (S2171).

We extract three distinct training/test protocols from S2171:

• Five-fold cross validation splits (5FOLD), in which test sequences

are selected in an interleaved fashion from the whole set sorted

alphabetically by PDB code (every fifth +k sequence is picked).

In this case the training sets contain 1736 or 1737 proteins and

the test sets 435 or 434. The performances given on 5FOLD are

effectively measured on the whole S2171, as each of its proteins

appears once and only once in the test sets.

• The first fold of the above containing a training set of 1736 proteins

(S1736) and a test set of 435 (S435).

• The same as the above, but containing only sequences of length at

most 200 residues, leaving 1275 proteins in the training set (S1275)

and 327 (S327) proteins in the test set.

Multiple sequence alignments for S2171 are extracted from the NR

database as available on March 3 2004 containing over 1.4 million sequences.

The database is first redundancy reduced at a 98% threshold, leading to a

final 1.05 million sequences. The alignments are generated by three runs of

PSI-BLAST 15 with parameters b = 3000, e = 10−3 and h = 10−10.

4.2. Training protocols

All RNNs are trained by minimising the cross-entropy error between the

output and target probability distributions, using gradient descent with

no momentum term or weight decay. The gradient is computed using the

Back-propagation through structure (BPTS) algorithm (for which, see e.g.
43). We use a hybrid between online and batch training, with 200 − 600

(depending on the set) batch blocks (roughly 3 proteins each) per train-

ing set. Thus, the weights are updated 200 − 600 times per epoch. The

bhttp://homepages.fh-giessen.de/˜hg12640/pdbselect
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training set is also shuffled at each epoch, so that the error does not de-

crease monotonically. When the error does not decrease for 50 consecutive

epochs, the learning rate is divided by 2. Training stops after 1000 epochs

for one-dimensional systems, and 300 epochs for two-dimensional ones.

4.3. One-dimensional feature predictors

4.3.1. Porter

Porter11 is a system for protein secondary structure prediction based on an

ensemble of 45 two-layered 1D DAG-RNNs. Porter is an evolution of the

popular SSpro10 server. Porter’s improvements include:

• Efficient input coding. In Porter the input at each residue is coded

as a letter out of an alphabet of 25. Beside the 20 standard amino

acids, B (aspartic acid or asparagine), U (selenocysteine), X (un-

known), Z (glutamic acid or glutamine) and . (gap) are considered.

The input presented to the networks is the frequency of each of

the 24 non-gap symbols, plus the overall proportion of gaps in each

column of the alignment.

• Output filtering and incorporation of predicted long-range infor-

mation. In Porter the first-stage predictions are filtered by a sec-

ond network. The input to this network includes the predictions of

the first stage network averaged over multiple contiguous windows,

covering 225 residues.

• Up-to-date training sets. Porter is trained on the S2171 set.

• Large ensembles (45) of models.

Porter, tested by a rigorous 5-fold cross validation procedure (set 5FOLD),

achieves 79% correct classification on the “hard” CASP 3-class assignment

(DSSP H, G, I → helix; E, B → strand; S, T, . → coil), and currently has

the highest performance (over 80%) of all servers tested by assessor EVA40.

4.3.2. Pale Ale

PaleAle is a system for the prediction of protein relative solvent accessibility.

Each amino acid is classified as being in one of 4 (approximately equally

frequent) classes: B=completely buried (0-4% exposed); b=partly buried (4-

25% exposed); e=partly exposed (25-50% exposed); E=completely exposed

(more than 50% exposed).

The architecture of PaleAle’s classifier is an exact copy of Porter’s
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(described above). PaleAle’s accuracy, measured on the same large, non-

redundant set adopted to train Porter (5FOLD) exceeds 55% correct 4-class

classification, and roughly 80% 2-class classification (Buried vs Exposed, at

25% threshold).

4.3.3. Brown Ale

BrownAle is a system for the prediction of protein Contact Density. We

define Contact Density as the Principal Eigenvector (PE) of a protein’s

residue contact map at 8Å, multiplied by the principal eigenvalue. Con-

tact Density is useful for the ab initio the prediction of protein of protein

structures for many reasons:

• algorithms exist to reconstruct the full contact maps from the PE

for short proteins 23, and correct contact maps lead to correct 3D

structures;

• Contact Density may be used directly, in combination with other

constraints, to guide the search for optimal 3D configurations;

• Contact Density may be adopted as an extra input feature to sys-

tems for the direct prediction of contact maps, as in the XXStout

server described below;

• predicted PE may be used to identify protein domains 25.

BrownAle predicts Contact Density in 4 classes. The class thresholds

are assigned so that the classes are approximately equally numerous, as

follows: N = very low contact density (0,0.04); n = medium-low contact

density (0.04,0.18); c = medium-high contact density (0.18,0.54); C = very

high contact density (greater than 0.54).

BrownAle’s architecture is an exact copy of Porter’s (described above).

The accuracy of BrownAle, measured on the S1736/S435 datasets is 46.5%

for the 4-class problem, and roughly 73% if the 4 classes are mapped into

2 (dense vs. non dense).

We have shown 28 that these performance levels for Contact Density

prediction yield sizeable gains to residue contact map prediction, and that

these gains are especially significant for long-ranged contacts, which are

known to be both harder to predict and critical for accurate 3D reconstruc-

tion.
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4.4. Two-dimensional feature predictors

4.4.1. XXStout

XXStout is a system for the prediction of protein residue contact maps.

Two residues are considered in contact if their C-αs are closer than a

given threshold. XXStout predicts contacts at three different thresholds:

6Å, 8Å and 12Å. The contact maps are predicted as follows: protein sec-

ondary structure, solvent accessibility and contact density are predicted

from the sequence using, respectively, Porter, PaleAle and BrownAle; en-

sembles of two-dimensional Recursive Neural Networks predict the contact

maps based on the sequence, a 2-dimensional profile of amino-acid frequen-

cies obtained from a PSI-BLAST alignment of the sequence against the

NR, and predicted secondary structure, solvent accessibility and contact

density. The introduction of contact density as an intermediate represen-

tation improves significantly the performances of the system. XXStout is

trained the S1275 set and tested on S327. Tables 1 and 2 summarise the

performances of XXStout on S327. Performances are given for the protein

length/5 and protein length/2 contacts with the highest probability, for se-

quence separations of at least 6, at least 12, and at least 24, in CASP style
3. These performances compare favourably with the best predictors at the

latest CASP competition 28.

Table 1. XXStout. Top protein length/5 contacts classification
performance as: precision%(recall%)

separation ≥ 6 ≥ 12 ≥ 24

8Å 46.4% (5.9%) 35.4% (5.7%) 19.8% (4.6%)
12Å 89.9% (2.3%) 62.5% (2.0%) 49.9% (2.2%)

Table 2. XXStout. Top protein length/2 contacts classification
performance as: precision%(recall%)

separation ≥ 6 ≥ 12 ≥ 24

8Å 36.6% (11.8%) 27.0% (11.0%) 15.7% (9.3%)
12Å 85.5% (5.5%) 55.6% (4.6%) 43.8% (4.9%)
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4.4.2. XStout

XStout is a system for the prediction of coarse protein topologies. A pro-

tein is represented by a set of rigid rods associated with its secondary

structure elements (α-helices and β-strands, as predicted by Porter). First,

we employ cascades of recursive neural networks derived from graphical

models to predict the relative placements of segments. These are repre-

sented as distance maps discretised into 4 classes. The discretisation levels

((0Å,10Å),(10Å,18Å),(18Å,29Å),(29Å,∞)) are statistically inferred from a

large and curated data set. Coarse 3D folds of proteins are then assembled

starting from topological information predicted in the first stage. Recon-

struction is carried out by minimising a cost function taking the form of a

purely geometrical potential. The reconstruction procedure is fast and of-

ten leads to topologically correct coarse structures, that could be exploited

as a starting point for various protein modelling strategies 41. Both coarse

distance maps and a number of coarse reconstructions are produced by

XStout.

5. Modelling Protein Backbones

The architecture of Fig. 3 is designed with the intent of making large

scale (i.e. genomic level) structure prediction of proteins of moderate

(length ≤ 200 AA) and possibly larger sizes. Our design relies on the induc-

tive learning components described in the previous sections and is based on

a pipeline involving stages of computation organised hierarchically. For a

given input sequence, first a set of flattened structural representations (1D

features) is predicted. These 1D features, together with the sequence are

then used as an input to infer the shape of 2D features. In the last stage, we

predict protein structures by means of an optimisation algorithm search-

ing the 3D conformational space for a configuration that minimises a cost.

The cost is modelled as a function of geometric constraints (pseudo energy)

inferred from the underlying set of 1D and 2D predictions (see section 4).

Inference of the contact map is a core component of the pipeline and is

performed in O(|w|n2) time, where n is the length of the input sequence

and |w| is the number of weights of our trained 2D-DAG RNNs (see sec-

tion 4.4.1). In section 5.3, we illustrate a 3D reconstruction algorithm with

O(n2) time complexity. All the steps are then fully automated and fast

enough to make the approach suitable to be applied to multi-genomic scale

predictions.
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5.1. Protein representation

To avoid the computational burden of full-atom models, proteins are

coarsely described by their main chain alpha carbon (Cα) atoms without

any explicit side-chain modelling. The bond length of adjacent Cα atoms is

restricted to lie in the interval 3.803 Å± 0.07 in agreement with the experi-

mental range (DB = 3.803 is the average observed distance). To mimic the

minimal observed distance between atoms of different amino acids, the ex-

cluded volume of each Cα is modelled as a hard sphere of radius DHC = 5.0

Å(distance threshold for hard core repulsion). Helices predicted by Porter

are modelled directly as ideal helices.

5.2. Constraints-based Pseudo Energy

The pseudo-energy function used to guide the search is shaped to encode the

constraints represented by the contact map and by the particular protein

representation (as described above).

Let Sn = {ri}i=1...n be a sequence of n 3D coordinates, with ri =

(xi, yi, zi) the coordinates of the i-th Cα atom of a given conformation

related to a protein p. Let DSn
= {dij}i<j , dij = ‖ri − rj‖2, be the cor-

responding set of n(n − 1)/2 mutual distances between Cα atoms. A first

set of constraints comes from the (predicted) contact map which can be

represented as a matrix C = {cij} ∈ {0, 1}n2

. The representation of pro-

tein models discussed in the previous paragraph induces the constraints

B = {dij ∈ [3.733, 3.873], |i− j| = 1}, encoding bond lengths, and another

set C = {dij ≥ DHC , i 6= j} for clashes. The set M = C ∪B ∪ C defines the

configurational space of physically realisable protein models.

The cost function measures the degree of structural matching of a given

conformation Sn to the available constraints. Let F0 = {(i, j) | dij > dT ∧

cij = 1} denote the pairs of amino acid in contact according to C but not

in Sn (“false negatives”). Similarly, define F1 = {(i, j) | dij ≤ dT ∧ cij = 0}

as the pairs of amino acids in contact in Sn but not according to C (“false

positives”). The objective function is then defined as:

C(Sn,M) = α0{1 +
∑

(i,j)∈F0

(dij/DT )2 +
∑

(i,j):dij 6∈B

(dij − DB)2}

+ α1|F1| + α2

∑

(i,j):dij 6∈C

e(DHC−dij) (6)

Note how the cost function is based only on simple geometric terms. The

combination of this function with a set of moves allows the exploration of
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the configurational space.

5.3. Optimisation Algorithm

The algorithm we used for the reconstruction of the coordinates of protein

Cα traces is organised in two sequential phases, bootstrap and search.

The function of the first phase is to bootstrap an initial physically realis-

able configuration with a self-avoiding random walk and explicit modelling

of predicted helices. A random structure is generated by adding Cα posi-

tions one after the other until a draft of the whole backbone is produced.

More specifically, this part runs through a sequence of n steps, where n

in the length of the input chain. At stage i, the position of the i-th Cα is

computed as ri = ri−1 + d r
|r| where d ∈ [3.733, 3.873] and r is a random

direction vector. Both d and r are uniformly sampled. If the i-th residue is

predicted at the beginning of an helix all the following residues in the same

segment are modelled as an ideal helix with random orientation.

In the search step, the algorithm refines the initial bootstrapped struc-

ture by global optimisation of the pseudo-potential function of Eq. 6 using

local moves and a simulated annealing protocol. Simulated annealing is a

good choice in this case, since the constraints obtained from various pre-

dictions are in general not realisable and contradictory. Hence the need for

using a “soft” method that tries to enforce as many constraints as possible

never terminating with failure, and is robust with respect to local min-

ima caused by contradictions. The search strategy is similar to that in 12,

but with a number of modifications. At step t of the search, a randomly

chosen Cα atom at position r
(t)
i is displaced to the new position r

(t+1)
i

by a crankshaft move, leaving all the others Cα atoms of the protein in

their original position (see Figure 4). Secondary structure elements are dis-

placed as a whole, without modifying their geometry (see Figure 5). The

move in this case has one further degree of freedom in the helix rotation

around its axis. This is assigned randomly, and uniformly distributed. A

new set of coordinates S(t+1) is accepted as the best next candidate with

probability p = min(1, e∆C/T (t)

) defined by the annealing protocol, where

∆C = C(S(t),M)−C(S(t+1),M) and T (t) is the temperature at stage t of

the schedule.

The computational complexity of the above procedure depends on the

maximum number of available steps for the annealing schedule and the

number of operations required to compute the potential of Eq.6 at each step.

The computation of this function is dominated by the O(n2) steps required
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Fig. 4. Crankshaft move: the i-th Cα at position ri is displaced to postition rj without
moving the others atoms of the protein.

Fig. 5. Secondary structure elements are displaced as a whole, without modifying their
geometry.

for the comparison of all pairwise mutual distances with the entries of the

given contact map. Note however that the types of move adopted allow to

explicitly avoid the evaluation of the potential for each pair of positions.

In the case of a residue crankshaft move, since only one position of the

structure is affected by it, ∆C can be directly computed in O(n) time by

summing only the terms of Eq.6 that change. For instance, in the case of

the terms taking into account the contact map, the displacement of one Cα

changes only a column and a row of the map induced by the configuration,

hence the effect of the displacement can be computed by evaluating the

O(n) contacts on the row and column affected. The complexity of evaluating

the energy after moving rigidly a whole helix is the same as moving all the

amino acids on the helix independently. Hence, the overall cost of a search
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is O(ns) where n is the protein length and s is the number of residues

moved during the search. In practice, the number s necessary to achieve

convergence is proportional to the protein length, which makes the search

complexity quadratic in n. A normal search run for a protein of length 100

or less takes a few tens of seconds on a single state-of-the-art CPU, roughly

the same as computing the complex of 1D and 2D feature predictions.

6. Reconstruction Results

The protein data set used in reconstruction simulations consists of a non re-

dundant set of 258 protein structures showing no homology to the sequences

employed to train the underlying predictive systems. This set includes pro-

teins of moderate size (51 to 200 amino acids) and diverse topology as

classified by SCOP (all-α, all-β, α/β, α +β, surface, coiled-coil and small).

In all the experiments, we run the annealing protocol using a non linear

(exponential decay) schedule with initial (resp. final) temperature propor-

tional to the protein size (resp. 0). Pseudo energy parameters are set to

α0 = 0.2 (false non-contacts), α1 = 0.02 (false contacts) and α2 = 0.05

(clashes), so that the conformational search is biased towards the gener-

ation of compact clash-free structures and with as many of the predicted

contacts realised.

Our algorithm is first benchmarked against a simple baseline that con-

sists in predicting models where all the amino acids in the chain are col-

lapsed into the same point (center of mass). We run two sets of simulations:

one where the reconstructions are based on native contact maps and struc-

tural features; one where all the structural features including contact maps

are predicted. Using contact maps of native folds allows us to validate the

algorithm and to estimate the expected upper bound of reconstruction per-

formance. In order to assess the quality of predictions, two measures are

considered here: root mean square deviation (RMSD); longest common se-

quence (LCS) averaged over four RMSD thresholds (1, 2, 4 and 8 Å) and

normalised by the sequence length.

For each protein in the test set, we run 10 folding simulations and av-

erage the distance measures obtained over all 258 proteins. In Figure 6,

the average RMSD vs sequence length is shown for models derived from

true contact maps (red crosses) and from predicted contact maps (green

crosses), together with the baseline computed for sequences of the same

length of the query. With true (reps. predicted) contact maps, the RMSD

averaged over all test chains is 5.11 Å(resp. 13.63 Å), whereas the LCS1248
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measure is 0.57 (resp. 0.29). For sequences of length up to 100 amino acids,

the reconstruction algorithm using predicted contact maps obtains an an

average LCS1248 of 0.43.

Fig. 6. Average RMSD vs sequence length.

In a second and more detailed suite of experiments, for each protein in

the test set, we run 200 folding simulations and cluster the corresponding

optimal structures at final temperature after 10000 iterations. The cluster-

ing step aims at finding regions of the configurational space that are more

densely populated, hence are likely to represent tight minima of the pseudo-

energy function. The centroid of the nth cluster is the configuration whose

qth closest neighbour is at the smallest distance. After identifying a cluster,

its centroid and q closest neighbours are removed from the set of configu-

rations. Distances are measured by RMSD (see below), and a typical value

of q is between 2 and 20. In our experiments, the centroids of the top 5

clusters are on average slightly more accurate than the average reconstruc-

tion. A protein is considered to be predicted with the correct topology if at

least one of the five cluster centroids is within 6.5 Å RMSD to the native

structure for at least 80% of the whole protein length (LCS(6.5) ≥ 0.8).
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Table 3. Number of topologically correct
(LCS(6.5) ≥ 0.8) predicted models.

Cluster size All Short Medium Long

2 26/258 22/62 3/103 1/93
3 32/258 24/62 7/103 1/93
10 29/258 23/62 6/103 0/93
20 32/258 26/62 6/103 0/93

Table 4. Percentage of correctly predicted topologies with respect to se-
quence length and structural class.

Length α β α + β α/β Surface Coiled-coil Small

all 20.3 4.0 7.3 6.3 33.3 66.7 16.7
short 64.7 25.0 35.7 33.3 60.0 60.0 25.0
medium 6.3 0 2.8 11.8 0 100 0
long 0 0 0 0 0 - -

A first set of results is summarised in table 3, where the proteins are

divided into separate categories based on the number of models in each

cluster (2, 3, 10 and 20) and length: from 51 to 100 amino acids (small),

between 100 and 150 amino acids (medium) and from 150 to 200 amino

acids (long). Table 3 shows for each combination of length and cluster size

the number of proteins in the test set for which at least one of the five

cluster centroids is within 6.5 Å of the native structure over 80% of the

structure. From the table it is evident that correctly predicted topologies

are restricted to proteins of limited size (up to 100-150 amino acids). Distill

is able to identify the correct fold for short proteins in almost half of the

cases, and for a few further cases in the case of proteins of moderate size

(from 100 to 150 residues).

In table 4, we group the results for 20 dimensional clusters according to

the SCOP assigned structural class and sequence length. For each combi-

nation of class and length, we report the fraction of proteins where at least

one of the five cluster centroids LCS(6.5) ≥ 0.8 to the native structure.

These results indicate that a significant fraction of α-helical proteins and

those lacking significant structural patterns are correctly modelled. Reliable

identification of strands and the corresponding patterns of connection is a

major source of difficulty. Nevertheless, the reconstruction pipeline iden-

tifies almost correct folds for about a third of the cases in which a short

protein contains a significant fraction of β-paired residues.

Figures 7, 8, 9 contain examples of predicted protein models from native
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and predicted contact maps.

Fig. 7. Examples of reconstruction, protein 1OKSA (53 amino acids): real structure
(left) and derived protein model from predicted contact map (right, RMSD = 4.24 Å).

7. Conclusions

In this chapter we have presented Distill, a modular and fully automated

computational system for ab initio prediction of protein coarse models. Dis-

till’s architecture is composed of: (1) a set of state-of-the-art predictors of

protein features (secondary structure, relative solvent accessibility, contact

density, residue contact maps, contact maps between secondary structure

elements) based on machine learning techniques and trained on large, non-

redundant subsets of the PDB; (2) a simple and fast 3D reconstruction

algorithm guided by a pseudo energy defined according to these predicted

features.

Although Distill’s 3D models are often still crude, nonetheless they may

yield important information and support other related computational tasks.

For instance, they can be effectively used to refine secondary structure and

contact map predictions47 and may provide a valuable source of information

to identify protein functions more accurately than it would be possible by

sequence alone7. Distill’s modelling scheme is fast and makes genomic scale
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Fig. 8. Example of reconstruction, protein 1LVF (106 amino acids): real structure (left)
and derived protein model from predicted contact map (right, RMSD = 4.31 Å).

structural modelling tractable by solving hundreds of thousands of protein

coordinates in the order of days.
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