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Abstract

We present an algorithm to reconstruct protein Cα traces from 4-class distance
maps, and benchmark it on a non-redundant set of 258 proteins of length between 51
and 200 residues. We first represent proteins as contact maps, and show that even
when exact maps are available, only low-quality models can often be obtained. We
then adopt a more powerful simplification of distance maps: multi-class contact maps.
We show that the reconstructions based on 4-class native maps are significantly better
than those from binary maps. Furthermore, we build two predictors of 4-class maps
based on recursive neural networks: one ab initio, or relying on the sequence and on
evolutionary information; one in which homology information is provided as a further
input, showing that even very low sequence similarity to PDB templates yields more
accurate maps than the ab initio predictor. We reconstruct Cα traces based on both ab
initio and homology-based 4-class map predictions. We show that homology-based
predictions are generally more accurate than ab initio ones even when homology is
dubious.

1 Introduction

Although a protein can be first characterised by its amino acid sequence, most proteins
fold into three-dimensional structures that encode their function. Genomics projects leave
us with millions of protein sequences, currently ≈ 6 × 106, of which only a small frac-
tion (≈ 2%) have their 3D structure experimentally determined. In the near future, we will
probably devolve upon structural genomics projects in order to bridge the huge gap between
sequence and structure. The current high throughput pipelines have to deal with serious
bottlenecks, e.g. a large fraction of targets are found to be unsuitable for structural deter-
mination with available methods [1]. Therefore, computational protein structure prediction
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remains an irreplaceable instrument for the exploration of sequence-structure-function re-
lationships. This is especially important for analyses at the genome or inter-genome level,
where informative structural models need to be generated for thousands of gene products
(or a portion of them) in reasonable amounts of time.

The faster and more reliable methods for structure prediction rely on the transfer
of knowledge between closely related proteins accumulated in sequence and structure
databases – the field known as template-based modelling. The algorithms employed typi-
cally adopt heuristics based on sequence and/or structural similarity to model the unknown
target structure based on known structures that are fathomed to be homologous to it. Au-
tomating the modelling process is difficult: there are several stages and critical points in
the design (choice of templates, the creation of a correct structural alignement etc.) and for
some of them manual intervention is at least helpful. The accuracy of template-based tech-
niques strongly depends on the amount of detectable similarity, thus preventing the reliable
application of these methods for a significant fraction of unannotated proteins. This is the
realm of the so called ab initio or de novo protein structure prediction, where models are
predicted not relying on similarity to proteins with known structure. Ab initio techniques
are obviously not as accurate as those based on templates, but the design in this case is
generally much simpler. Moreover, improvements can be obtained by relying on fragment-
based algorithms [2], that use fragments of proteins of known structure to reconstruct the
complete structure of the target protein. A system for the prediction of protein structures ab
initio is generally composed of two elements: an algorithm to search the space of possible
protein configurations to minimise some cost function; the cost function itself, composed of
various constraints being either derived from physico-chemical laws, experimental results,
or being structural features (e.g. secondary structure or solvent accessibility) predicted by
machine learning or other kinds of statistical systems [3].

We describe and benchmark all the components of a fully-automated system for pro-
tein structure modelling which is fast and simple in the design (modular, few stages). The
same protocol is applied whether or not the unknown input protein shares significant lev-
els of similarity to other proteins with known structure, and is based on two steps, solved
efficiently. Given the input protein, we first encode information about the family of homol-
ogous sequences and possibly structures. Sequence information has the form of profiles
extracted from multiple sequence alignemnts. Unlike the usual template-based methodol-
ogy, there is no a priori choice of the best available templates used to model the unknown
structure. For each position of the input sequence, structural information from putative tem-
plates (if present) is carefully weighed according to the quality of their respective structures
and the amount of similarity. Based on sequence and structural information, we make infer-
ences about the geometry of the unknown structure by predicting a set of soft constraints by
machine learning. The unknown structure is found in the second and final stage. Here, the
system features the typical structure of ab initio methods, where modelling occurs as a result
of searching the configurational space of 3D structures with a suitable potential or pseudo-
energy function. At the current stage of development, the potential is a non linear function
of the soft constraints found in the first stage, with few parameters and simple enough to be



Fast Modelling of Protein Structures Through Multi-level Contact Maps 3

globally optimised by quick Monte Carlo searches using a linear schedule. In order to keep
the simulations within manageable times, protein structures are represented by the trace of
their backbone Cα atoms, bearing in mind it is hard to derive a meaningful energy model
for such stripped-down representation of a protein. We overcome this problem by relying
on informative geometrical constraints to discern native-like protein conformations from
unfolded, or incorrectly folded ones. The constraints predicted in the first stage have the
form of residue based pairwise distance attributes labelled into two or more classes.

In the past, research has focussed on studying binary contact maps (i.e. two classes,
contact or not). It is generally believed that binary maps provide sufficient information to
unambiguosly reconstruct native or near-native models [4]. Efforts have therefore been put
on the prediction of this kind of distance restraints. Unfortunately, the expected success
rates of the most promising techniques developed for this problem have not improved to
satisfactory levels, despite years of attempts [5]. The reason for this is at least twofold.
First, contact map prediction is an unbalanced problem, with far fewer contacts than non-
contacts. Especially for long-range contacts (i.e. those between amino acids that are tens
or hundreds of positions apart in the sequence) the ratio between negative and positive
examples can exceed 100. Second, contact map predictors are generally ab initio, i.e. do
not exploit all available information. Another problem with binary contact maps is that,
although it has long been stated that native maps yield correct structures, this is true only at
a relatively low resolution (3-4Å on average, in the best case).

In this chapter, we introduce a representation of protein structures based on a generali-
sation of binary contact maps, multi-class distance maps, and show that it is powerful and
predictable with some success. Our tests suggest that multi-class maps, when using experi-
mental restraints, are informative enough to quickly guide simple optimisation searches to
nearly correct models - significantly better than with binary contact maps. We compare re-
constructions based on binary and multi-class maps on a non-redundant set of 258 proteins
of length between 51 and 200 residues. The reconstructions based on multi-class maps have
an average Root Mean Square Deviation (RMSD) of roughly 2 Å and a TM-score of 0.83
to the native structure (4 Å and 0.65 for binary maps).

We then develop high-throughput systems for the prediction of multi-class contact
maps, which exploit similarity to proteins of known structure, where available, in the form
of simple structural frequency profiles from sets of PDB templates. We build two predic-
tors of multi-class maps based on recursive neural networks: one ab initio, or relying on
the sequence and on evolutionary information; one in which homology information is pro-
vided as a further input. We show that even very low sequence similarity to PDB templates
(PSI-BLAST e-value up to 10) yields more accurate maps than the ab initio predictor. Fur-
thermore, the predicted map is generally more accurate than the maps of the templates,
suggesting that the combination of sequence and template information is more informative
than templates alone. Finally, the optimisation search protocol we developed is bench-
marked using both ab initio and homology-based multi-class map predictions. We show
that homology-based predictions are generally more accurate than ab initio ones even when
homology is dubious, and that fair to accurate protein structure predictions can be generated
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Figure 1: Full atoms three dimensional structure for protein 1SF9. While computationally
intense, the full atoms representation allows to display all structural information, like side
chains orientation and secondary structure elements.

for a broad range of homology to structures in the PDB.
Using the current reconstruction protocol, hundreds of reconstructions for the same pro-

tein can be performed in few minutes on current machines. On small clusters of machines
it is possible to perform predictions on a genomic scale in few hours for simpler organisms,
or few days for the most complex ones.

2 Representing Protein Structures

Protein three-dimensional (3D) structures are fully represented by the coordinates of their
atoms. For a protein with N atoms, 3N coordinates are then needed to describe its 3D struc-
ture (Figure 1). Although this is the ideal representation, it has the drawback of yielding a
computationally intense model. Simplified representations have been proposed before, in
which an amino acid is typically described by fewer points than the atoms it contains, thus
reducing the degrees of freedom of the model. Typical simplified representations include
backbone only models, where all the side chain atoms are excluded, and virtual atom mod-
els, where each residue in the sequence is assigned a virtual (i.e. geometrical, not physical)
point, to represent a subset of its atoms [6]. At the extreme of the above cases are repre-
sentations with only one point per amino acid, typically the Cα atom (see Figure 2), or Cβ

atoms. This way the degrees of freedom needed to represent a protein of N atoms and M
amino acids are reduced to 3M , with M << N .

The prediction algorithm described in this work represents protein structures as the trace
of their backbone Cα atoms, one for each amino acid of the sequence. An obvious advantage
of this choice is its extreme simplicity, given that one order of magnitude fewer points are
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Figure 2: Cα trace for protein 1SF9. Although computationally less intense than a full atom
model (it uses one order of magnitude fewer points, and yields two orders of magnitude
fewer interactions), using a representaion from which most of the native protein details have
been removed has the drawback of making it hard to derive a meaningful energy model.

used, which yields two orders of magnitude fewer interactions than a full atom model. It
is worth noting that reliable full-atom model can be generally derived from Cα traces close
to the native ones, for instance by refining them using molecular dynamics simulations, or
optimisations of detailed energy functions applied to full atom models predicted from the
backbone [7]. The real difficulty is to derive a meaningful energy model for a protein from
which most of the details have been removed, to effectively explore the search space from
random initial configurations. Here we overcome the problem by relying entirely on non-
physical (i.e. geometrical) constraints to discern good (native-like) conformations from bad
(unfolded, or incorrectly folded) ones. Although this is a simplified goal, we show that
success in this task generally yields informative predictions.

The potentials we develop in the next section are based on terms measured using another
simplified representation of protein structures, the contact map. A protein’s contact map
belongs to a class of two-dimensional (2D) projections of 3D representations of geometrical
objects. In the next subsection we give a brief description of contact maps, particularly
focussing on multi-class ones, which are the representations our prediction algorithm relies
on.

Distance matrix and contact map

Using two-dimensional projections of 3D objects is an attractive way of encoding geomet-
rical information of protein structures, as these are scale and rotation invariant and do not
depend on the coordinate frame. Therefore, 2D projections can be modelled as the output
variable of learning or statistical systems trained in a supervised fashion, i.e. using sam-
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Figure 3: Distance matrix in greyscale image format. White is 0 Å and black is the maxi-
mum distance in the protein.

ples of (input, target) pairs collected from structure databases. We call this encoding of a
structure 2D because it can be graphically represented as a two-dimensional matrix, where
the cells denote properties of pairs of objects in the 3D space. In the case of proteins, the
geometrical relationship may involve fragments of the structure at different scales, using for
instance amino acid [8] or secondary structure segment pairs [9], the former being much
more common than the latter. Contact maps at 8Å have been assessed as a special category
at CASP for several years [5].

Geometrical relationships between amino acids can be expressed as a set of distance
restraints, e.g. in the form L ≤ d(i, j) ≤ U , where d(i, j) is the distance between residues
in positions i and j and L (resp. U ) is lower (resp. upper) bound on the distance. Restraints
such as the above ones can be experimentally determined, e.g. from NMR experiments.
Indeed, algorithms for modelling protein structures from distance restraints are borrowed
from the NMR literature and use for instance stochastic optimisation methods [4, 10], dis-
tance geometry [11, 12], and variants of them [13–15].

There is a trade-off between the resolution of the input restraints, e.g. the uncertainty
with which they specify the property of the pairs, and the ability of the reconstruction al-
gorithm to recover the correct model from these inputs. In the best case, the complete
noise-free distance matrix is available, and the optimisation problem can be solved analyt-
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Figure 4: Different secondary structure elements like helices (thick bands along the main
diagonal) and parallel− or anti-parallel−β-sheets (thin bands parallel− or anti-parallel −
to the main diagonal) are easily detected from the contact map.

ically by finding a 3D embedding of the 2D restraints. A distance matrix consists in the
set {d(i, j)}i>j of N(N − 1)/2 distances between any two points in positions i and j of a
protein with N amino acids. Note how the distance matrix corresponds to the above form
of constraints with lower distance bound equal to the upper one. Figure 3 shows a greyscale
picture of the distance matrix of the protein with PDB code 1ABV, where the distances are
calculated between the Cα atoms.

The distance matrix or even detailed distance restraints cannot be reliably determined
by means of computational techniques, unless experimental data is available or when there
is strong homology to proteins with known structure. This is why in the past research has
focussed on predicting representations of the distance matrix which are at the same time
simpler to learn and able to retain substantial structural information. The contact map of
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a protein is a labelled matrix derived by thresholding the distance matrix and assigning
labels to the resulting discrete intervals. The simplest alternative is the binary contact map,
where one distance threshold t is chosen to describe pairs of residues that are in contact
(d(i, j) < t) or not (d(i, j) ≥ t). The binary contact map can also be seen as the adjacency
matrix of the graph with N nodes corresponding to the residues. Binary contact maps are
popular as noise-tolerant alternatives to the distance map, and algorithms exist to recover
protein structures from these representations [4,16,17]. Unfortunately, our studies and other
empirical evidence indicates that recovering good-quality models even from the binary map
of the native fold is difficult [17] The definition of contact among amino acid is based on
a single atom (normally Cα or Cβ) and depends on a geometrical threshold. This may be
ambigous in situations where other knowledge must be taken into account, for instance
when the orientation of the side-chain is important.

Although numerous methods have been developed for binary contact map prediction
[18–24], improvements are only slowly occurring (e.g. in [21], as shown by the CASP6
experiment [25]). Accurate prediction is far from being achieved and limitations of existing
prediction methods have again emerged at CASP7 and from automatic evaluation of struc-
ture prediction servers such as EVA [26]. There are various reasons for this: the number
of positive and negative examples (contacts vs. non contacts) is strongly unbalanced; the
number of examples grows with the squared length of the protein making this a tough com-
putational challenge; capturing long ranged interactions in the primary sequence is difficult,
hence grasping an adequate global picture of the map is a formidable problem.

Based on the above considerations, we believe that alternative representations of protein
topologies are particularly appealing, provided that they are informative and, especially,
predictable. Here we focus on a representation of the distance matrix called multi-class
contact map and based on a set of categorical attributes or classes. Each class corresponds
to an interval of distances (in Å) where a given pair of residues may fall into. Formally,
given a set of distance thresholds {tk}k=0...T (where t0 = 0 and tT = ∞), a multi-class
contact map of a protein with N amino acids is a symmetrix N × N matrix C where the
element corresponding to the amino acids in positions i and j is defined as Cij = k if
d(i, j) ∈ [tk, tk+1). Obviously, this class of projections contains richer information than
binary contact maps (so long as T > 3). Therefore, using multi-class contact maps is
expected to improve the resolution of reconstruction algorithms on geometrical constraints.
Moreover, if a suitable set of distance thresholds is chosen, the number of instances in
each class may be kept approximately balanced, which in turn may improve generalisation
performances of learning algorithms over the (normally unbalanced) binary prediction case.

For our experiments, we derived a set of five distance thresholds to define multi-class
contact maps based on four distance intervals. As shown in Figure 5, the four classes are
empirically chosen from the distribution of distances among amino acids in the training set,
ignoring trivial pairs |i− j| ≤ 3 and by trying to keep informative distance constraints and
the classes as balanced as possibile. The resulting set of thresholds is {0, 8, 13, 19,∞},
which defines suitable distance intervals corresponding to short ([0, 8)), medium ([8, 13),
[13, 19)) and long-ranged interactions among amino acids. A potential improvement be-
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Figure 5: Distribution of contacts in [0,50] distance bins with trivial |i − j| ≤ 3 residue
contacts ignored. The classes were chosen in order to retain good distance constraints
and balanced classes. Class 1 ([0,8)Å) corresponds, as a first approximation, to physical
contacts.
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yond this choice is to automatically determine an optimal set of thresholds based on some
criteria, e.g. the reconstruction ability on a set of benchmarking proteins.

3 Modelling Structures with Contact Maps

We predict protein models by solving a global optimisation problem, where a function
(pseudo-energy) is minimised by searching the configurational space of 3D structures. The
pseudo-energy function we use to guide the search is designed in a way that allows us to
solve an unconstrained minimisation problem by a simple simulated annealing protocol.
More specifically, the pseudo-energy function measures the degree of match of a protein
conformation to the constraints encoded in the contact map (binary or multi-class) pre-
dicted in the first stage. In the following, we describe the set of moves used to explore the
configurational space and the different forms of potential functions used respectively for
binary and multi-class contact maps.

3.1 Optimisation Algorithm

The algorithm we use for the reconstruction of the coordinates of protein Cα traces is or-
ganised in two sequential phases, bootstrap and search. The function of the first phase is
to generate an initial physically realisable configuration. A random structure is created us-
ing a self-avoiding random walk and explicit modelling of predicted helices, by adding Cα

positions one after the other until an initial draft of the whole backbone is obtained. More
specifically, this part runs through a sequence of N steps, with N being the length of the
input chain. At stage i, the position of the i-th Cα is computed as ri = ri−1 + d r

|r| where
d ∈ [3.733, 3.873] and r is a random direction vector. Both d and r are uniformly sampled.
If the i-th residue is predicted at the beginning of an helix, all the following residues in the
same segment are modelled as an ideal helix with random orientation.

In the search step, the algorithm refines the initial bootstrapped structure by global
optimisation of a pseudo-potential function using local moves and a simulated annealing
protocol. Simulated annealing is a good choice in this case, since the constraints obtained
from various predictions are in general not realisable and contradictory. Hence the need for
using a “soft” method that tries to enforce as many constraints as possible never terminating
with failure, and is robust with respect to local minima caused by contradictions. The
search strategy is similar to that in [4], but with a number of modifications. At step t of
the search, a randomly chosen Cα atom at position r

(t)
i is displaced to the new position

r
(t+1)
i by a crankshaft move (Figure 6), leaving all the other Cα atoms of the protein in their

original position. Secondary structure elements are displaced as a whole, without modifying
their geometry (Figure 7). The move in this case has one further degree of freedom in
the helix rotation around its axis. This is assigned randomly, and uniformly distributed.
A new set of coordinates S(t+1) is accepted as the best next candidate with probability
p = min(1, e∆C/T (t)

) defined by the annealing protocol, where ∆C = C(S(t),M) −
C(S(t+1),M) and T (t) is the temperature at stage t of the schedule.
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Figure 6: Crankshaft move: a randomly chosen Cα atom at position r
(t)
i is displaced to the

new position r
(t+1)
i leaving all the others Cα atoms of the protein in their original position.

3.2 Pseudo-energy function

Let Sn = {ri}i=1...n be a sequence of n 3D coordinates, with ri = (xi, yi, zi) the
coordinates of the i-th Cα atom of a given conformation related to a protein p. Let
DSn = {dij}i<j , dij = ‖ri − rj‖2, be the corresponding set of n(n − 1)/2 mutual dis-
tances between Cα atoms. A first set of constraints comes from the (predicted) contact
map and depends on the type of contact maps, i.e. binary (see section 3.2.1) or multi
class maps (see section 3.2.2). The representation of protein models induces the con-
straints B = {dij ∈ [3.733, 3.873], |i − j| = 1}, encoding bond lengths, and another set
C = {dij ≥ DHC , i 6= j} for clashes. The set M = C ∪ B ∪ C defines the configurational
space of physically realisable protein models.

3.2.1 Binary contact map constraints

When using binary contact maps the set of contraints coming from the predicted maps can
be represented as a matrix C = {cij} ∈ {0, 1}n2

. Let F0 = {(i, j) | dij > dT ∧ cij = 1}
denote the pairs of amino acid in contact according to C (binary case) but not in Sn (“false
negatives”). Similarly, define F1 = {(i, j) | dij ≤ dT ∧cij = 0} as the pairs of amino acids
in contact in Sn but not according to C (“false positives”). The objective function is then
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Figure 7: Secondary structure elements are displaced as a whole, without modifying their
geometry.

defined as:

C(Sn,M) = α0{1 +
∑

(i,j)∈F0

(dij/DT )2 +
∑

(i,j):dij 6∈B

(dij −DB)2}

+ α1|F1|+ α2

∑
(i,j):dij 6∈C

e(DHC−dij) (1)

3.2.2 4-class contact map constraints

In the case of 4-class contact maps, the constraint derived from the predicted map assumes
a slightly different form. Since contacts between pairs of Cα are here predicted in four
classes, a contact is penalised not only if it is not present in the predicted map, but also
depending on its distance to the boundaries of the correspoding class: Fk = {(i, j) | Dk <
dij < Dk+1 ∧ cij 6= k} with Dk being the distance thresholds that define the classes.
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Let D
′
k = (Dk + Dk+1)/2, then the objective function is defined as:

C(Sn,M) = α0{1 +
∑

k

∑
(i,j)∈Fk

(dij/D
′
k)

2

+
∑

(i,j):dij 6∈B

(dij −DB)2}+ α1

∑
(i,j):dij 6∈C

e(DHC−dij) (2)

3.3 Experiments and Results

The protein data set used in reconstruction simulations consists of a non redundant set of
258 protein structures (S258) showing no homology to the sequences employed to train
the contact map predictors (see below). This set includes proteins of moderate size (51 to
200 amino acids) and diverse topology as classified by SCOP (Structural Classification of
Proteins database) [27] (all-α, all-β, α/β, α + β, surface, coiled-coil and small). No two
proteins in this set share more than 25% sequence identity.

In all the experiments, we run the annealing protocol using a non linear (exponential
decay) schedule with initial (resp. final) temperature proportional to the protein size (resp.
0). Pseudo energy parameters are set to α0 = 0.2 (false non-contacts), α1 = 0.02 (false
contacts) and α2 = 0.05 (clashes) for binary maps and α0 = 0.005 and α1 = 0.05 (clashes)
for multi-class maps, so that the conformational search is biased towards the generation of
compact clash-free structures and with as many of the predicted contacts realised.

In the first set of simulations we compare the quality of reconstructions based on binary
maps and multi-class maps for the case in which experimental constraints are known, that
is the maps are native. We use binary maps at 12Å , since these are more informative than
a number of alternative we tested (tests not shown).

In order to assess the quality of predictions, two measures are considered here: root
mean square deviation (RMSD) and TM-score [28] between the predicted structure and the
native one.

For each protein in the test set, we run 10 folding simulations and select the best one.
The results for the best simulations are then averaged over all the 258 proteins in the set and
are reported in Table 1.

Maps RMSD TM-score
Binary 4.01 0.65
4-Class 2.23 0.83

Table 1: Reconstruction algorithm results for the best models derived from binary and
multi-class true contact maps.
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4 Contact Map Prediction

Only a small number of algorithms have being developed for the prediction of distance
maps [11, 29]. Far more common are methods for the prediction of binary contact maps
[18–24], with distance cutoffs of 6Å , 8Å , 10Å , or 12Å usually chosen to define the
threshold between a contact and a non-contact. At the Critical Assessment of Protein Struc-
ture Prediction, CASP [30], maps are evaluated with a distance threshold of 8Å between
Cβ atoms (Cα in the case of Gly). There is a wide range of machine learning techniques for
predicting contacts: hidden markov models [31], recursive neural networks [9], multi-layer
perceptrons [18, 19, 24], support vector machines [22, 23], and self-organizing maps [21]
are just a few.

Predictors of contact maps are virtually always ab initio, meaning that they do not rely
directly on similarity to proteins of known structure. In fact, often, much care is taken to try
to exclude any detectable similarity between training and test set instances when gauging
predictive performances of structural feature predictors.

The method we present here is based on recursive neural networks, in particular 2-
dimensional recursive neural networks (2D-RNNs). We predict both binary and multi-class
maps. The system presented is an update of the system which took part in CASP7 [30].
The most significant update is the addition of homology information from the PDB [32]. In
the following sections we give a detailed overview of the system and show that homology
information greatly increases the performance of the predictor, even in the difficult [0,30)%
sequence identity homology zone.

4.1 2D-RNNs

2D-RNNs were previously described in [20] and [33]. This is a family of adaptive models
for mapping two-dimensional matrices of variable size into matrices of the same size.

If oj,k is the entry in the j-th row and k-th column of the output matrix (in our case, it
will represent the estimated probability of residues j and k belonging to a particular class),
and ij,k is the input in the same position, the input-output mapping is modeled as:

oj,k = N (O)
(
ij,k, h

(1)
j,k , h

(2)
j,k , h

(3)
j,k , h

(4)
j,k

)
h

(1)
j,k = N (1)

(
ij,k, h

(1)
j−1,k, .., h

(1)
j−s,k, h

(1)
j,k−1, .., h

(1)
j,k−s

)
h

(2)
j,k = N (2)

(
ij,k, h

(2)
j+1,k, .., h

(2)
j+s,k, h

(2)
j,k−1, .., h

(2)
j,k−s

)
h

(3)
j,k = N (3)

(
ij,k, h

(3)
j+1,k, .., h

(3)
j+s,k, h

(3)
j,k+1, .., h

(3)
j,k+s

)
h

(4)
j,k = N (4)

(
ij,k, h

(4)
j−1,k, .., h

(4)
j−s,k, h

(4)
j,k+1, .., h

(4)
j,k+s

)
j, k = 1, . . . , N

s = 1, . . . , S
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where h
(n)
j,k for n = 1, . . . , 4 are planes of hidden vectors transmitting contextual infor-

mation from each corner of the matrix to the opposite corner. We parametrise the output
update, and the four lateral update functions (respectivelyN (O) andN (n) for n = 1, . . . , 4)
using five two-layered feed-forward neural networks, as in [33]. Stationarity is assumed for
all residue pairs (j, k), that is the same parameters are used across all j = 1, ..., N and
k = 1, ..., N . Each of the 5 neural network contains its own individual parameters, that are
not constrained to the ones of the other networks.

We use 2D-RNNs with shortcut connections. The best way to think of shortcuts is to
think of a simple recurrent network in a 1-dimensional (1D) case. The standard definition
of 1D recurrent neural networks prescribe an explicit dependency between the input being
processed now (here), at time (position) j, and the item processed previously, j − 1, re-
sulting in an implicit dependency between j and all previous items. Most algorithms lack
the power to extract information from the implicit dependencies (especially when using
gradient learning) beyond the span of a few steps, because of the well known problem of
vanishing gradient [34]. Therefore allowing shortcuts is an extension of this idea where in
addition to simply having a a direct dependency on the previous item, j − 1, there is also a
direct dependency on the previous j − s for all s > 1, ..., S. Indeed, shortcut connections
can be placed at any of the previous inputs j−s for any s ∈ 1, .., S. The latter placement of
shortcuts between j and S was used to produce near perfect secondary structure predictions
in a bidirectional recurrent neural network when (j, s) are native contacts [35]. Notice that
increasing the number of shortcuts increases the parameters resulting in a model that may
overfit on the data. Extending this idea to the 2D case in any direction in the matrix is
straightforward (in fact any dimension can be processed). Shortcut directions and patterns
are not strictly constrained (so long as cycles are not introduced in the directed graph rep-
resenting the network) and may even be learned. With the addition of shortcuts the span
of contextual information analysed by a recursive network can be extended, although this
may come at the price of increased noise reaching the input, and increased potential for
overfitting the examples.

The choice of input ij,k is an important factor for the algorithm. In the case of contact
map prediction the simplest input is the amino acid symbols at (j, k). Different input signals
can be constructed to improve the algorithm. For example, contact density was used in [8]
to improve contact map prediction accuracy significantly. In section 4.4 the design of the
input will be discussed.

4.2 Training

Learning proceeds by gradient descent by minimising the relative cross entropy between
target and output. Careful management of the gradient must take place, not letting it be too
small or too large: the absolute value of each component of the gradient is kept within the
[0.1,1] range, meaning that it is set to 0.1 if it is smaller than 0.1, and to 1 if it is greater than
1. The learning rate is set to 0.3 divided by the the total number of proteins in the dataset.
The weights of the networks are initialised randomly.
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Learning is slow due to the complexity of the problem. Each 2D-RNN contains 5 neural
networks, replicated N2 times for a protein of length N . During each training epoch for-
ward and back-propagation has to occur in each of the 5×N2 networks, for all P proteins in
the training set. The neural network forward and back-propagation have a complexity pro-
portional to O(θ) where θ is the number of parameters in the network. Learning generally
converges at about 300-350 epochs. Although the complexity of an epoch is polynomial at
O(θN2P ), the large size of the training set, and especially the quadratic term in the length
of the proteins make learning quite time-consuming. Training of all systems (binary, multi-
class; ab initio, template-based) took approximately three months on a cluster of 10 2.8GHz
CPUs.

However, during prediction only one forward propagation needs to run for each in-
stance, meaning that predictions for a set may be run in roughly 3 orders of magnitude less
time than a training on the same set. For instance, maps for 1000 proteins of average length
120 amino acids can be predicted in approximately 13 hours on a single 2.8GHz CPU, and
genomic-scale predictions are possible even on a small cluster of machines.

4.3 Architecture

In each of the 5 neural networks used to parameterise the functions, N (O) and N (n) for
n = 1, . . . , 4, we use a single hidden layer. Let Nhh and Nho denote the number of units
associated with the hidden layer and the output layer of the hidden contextual networks
respectively. From the definition of the 2D-RNN we see that each hidden network has I
regular input units and 2×Nho + S ×Nho contextual inputs, where S are the total number
of shortcuts allowed. Thus, including the usual bias terms in each layer, the total number
of parameters in one of the four hidden networks is: (I + 2 × Nho + S × Nho) × Nhh +
Nhh + Nhh × Nho + Nho. The output network also contains I regular inputs but it takes
contextual inputs from the four hidden networks 4 × Nho resulting in: (I + 4 × Nho) ×
Nh +Nh +D×Nh+D parameters, where Nh are the number of units in the hidden layer
of the output network and D is the number of classes. The activation functions used are
softmax and tanh. Only the output units of the output network have softmax functions in
order to estimate Bayesian posterior probability of class membership. All other units have
tanh transfer functions.

No overfitting avoiding techniques such as early stopping or weight decay were applied
given the very large size of the datasets, and the fact that we ensemble many networks in
the final predictor (see section 4.5.2).

Due to the large computational power needed to train one model we ensemble networks
both from different trainings and from different stages of the same training. Networks
are saved every 5 epochs, and for each training the last 3 networks are ensembled. Three
networks with different architectural parameters (Nhh = Nho = Nh = 13, 14, 15) are
trained for each predictor. Results for network performances in this work are reported
for these ensembles of 3 × 3 = 9 models. Ensembling leads to significant classification
performance improvements over single models.
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All results are in 5-fold cross validation, meaning that, in fact, 5 times 9 models are
available for each system. For the reconstruction results (see next section) only the final
networks for each training are ensembled, for a total of 1× 3× 5 = 15 for each system.

The number of classes is D = 2 or D = 4 depending on the problem (binary vs. multi-
class). For all networks the number of shortcuts is S = 2, with more sophisticated shortcut
placements to be investigated in the future.

4.4 Input Design

Input ij,k associated with the j-th and k-th residue pair contains primary sequence infor-
mation, evolutionary information, structural information, and direct contact information
derived from the PDB templates:

ij,k = (i(E)
j,k , i

(T )
j,k ) (3)

where, assuming that e units are devoted to evolutionary sequence information and struc-
tural information in the form of secondary structure [36, 37], solvent accessibility [36, 38]
and contact density [8]:

i
(E)
i,j = (i(1)

(E)

j,k , . . . , i
(e)(E)

j,k ) (4)

Template information is placed in the remaining t units:

i
(T )
j,k = (i(1)

(T )

j,k , . . . , i
(t)(T )

j,k ) (5)

Hence ij,k contains a total of e + t components.
As in [8] e = 418, consisting of a sparse 20×20 matrix corresponding to the frequency

of all pairs of amino acids observed in the two columns j and k of the multiple sequence
alignment - this was chosen in order to capture information about correlated mutations.
Structural information in the form of secondary structure (three classes), solvent accessi-
bility (two classes), and contact density (four classes) for residue j and k are placed in the
remaining 6,4 and 8 input units respectively.

For the template units we use t = 3 for binary maps and t = 5 for multi class maps,
representing weighted contact class information from the templates and one template qual-
ity unit. For example, in the case of multi class maps the first four input units contain the
weighted average contact class frequency in the PDB templates, while the last unit encodes
the average quality of the template column. Assume that d

(p)
j,k is a 4-component binary vec-

tor encoding the contact class of the j-th and k-th residue pair in the p-th template. Then,
if P is the total number of templates for a protein:

(i(1)
(T )

j,k , . . . , i
(4)(T )

j,k ) =

∑P
p=1 wpd

(p)
j,k∑P

p=1 wp

(6)

where wp is the weight attributed to the p-th template. If the sequence identity between
template p and the query is idp and the quality of a template (measured as X-ray resolution
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+ R-factor/20 or 10 for NMR hits, as in [39]) is qs, then the weight is defined as:

wp = qpid
3
p (7)

Taking the cube of the identity between template and query allows to drastically reduce the
contribution of low-similarity templates when good templates are available. For instance
a 90% identity template is weighed two orders of magnitude more than a 20% one. In
preliminary tests (not shown) this measure performed better than a number of alternatives.

The final unit of ij,k, the quality unit, encodes the weighted average coverage and simi-
larity of a column of the template profile as follows:

i
(5)(T )

j,k =

∑P
p=1 wpcp∑P
p=1 wp

(8)

where cp is the coverage of the sequence by template p (i.e. the fraction of non-gaps in the
alignment). Encoding template information for the binary maps is similar.

Ab initio based predictions use only the first part of the input, i
(E)
j,k from equation 4,

including secondary structure, solvent accessibility and contact density, although these are
predicted ab initio. The template based predictions use the complete ij,k as input.

4.5 Experiments

4.5.1 Problem definition

The main objective of the experiments is to compare ab initio systems (PDB templates are
assumed unavailable) and template-based systems. When very reliable PDB information
(e.g. sequence identity to the query greater than 30-35%) is available we expect template-
based predictions to be substantially better, and in fact, to nearly exactly replicate the maps
of the best template. More interesting questions are: whether template-based predictions
improve on ab initio ones in the so called twilight zone of sequence similarity (less than
30%); whether, in this same region, template-based predictions are better than can be ob-
tained by simply copying the map of the best template, or a combination of the maps of the
templates.

The 4 systems that we test are 12 Å ab intio contact maps (12AI), 12 Å contact maps
with templates (12TE), multi-class ab intio (MAI) and multi- class with templates (MTE).

4.5.2 Dataset

The dataset used in the present simulations is extracted from the December 2003 25%
pdb select list1. We use the DSSP program [40] (CMBI version) to assign relevant struc-
tural features (secondary structure and relative solvent accessibility). Cα coordinates, di-
rectly available from the PDB, are used to calculate contact density [8]. Sequences for

1http://homepages.fh-giessen.de/˜hg12640/pdbselect
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class 0 class 1 class 2 class 3

12Å 4,062,483 15,755,172

Multi class 1,623,411 3,205,472 5,176,584 9,812,188

Table 2: Number of residues contained in 12Å binary classes and the four classes in the
Multi class definition.

which DSSP does not produce an output due, for instance, to missing entries or format
errors are removed. For computational reasons, and to focus on single domains, proteins
which have more than 200 amino acids are also removed. After processing by DSSP and
the removal of long proteins, the set contains 1602 proteins and 163,379 amino acids. All
the tests reported in this paper are run in 5-fold cross validation. The 5 folds are of roughly
equal sizes, composed of 318-327 proteins. The datasets are available upon request.

Evolutionary information in the form of Multiple sequence alignments have long being
shown to improve prediction of protein structural features [20, 33, 37, 41–45]. Multiple
sequence alignments for the 1602 proteins are extracted from the NR database as available
on March 3 2004 containing over 1.4 million sequences. The database is first redundancy
reduced at a 98% threshold, leading to a final 1.05 million sequences. The alignments are
generated by three runs of PSI-BLAST [46] with parameters b = 3000, e = 10−3 and
h = 10−10.

Table 2 shows the class distribution of both types of map in the dataset. What is imme-
diately obvious from this table is that the class distribution is more balanced in the 4 class
problem and therefore should be easier to learn.

4.5.3 Template generation

For each of the 1602 proteins we search for structural templates in the PDB. We base our
search on PDBFINDERII [47] as available on August 22 2005. An obvious problem arising
is that all proteins in the set are expected to be in PDB (barring name changes), hence every
protein will have a perfect template. To avoid this, we exclude from PDBFINDERII every
protein that appears in the set. We also exclude all entries shorter than 10 residues, leading
to a final 66,350 chains. Because of the PDBFINDERII origin, only one chain is present in
this set for NMR entries.

To generate the actual templates for a protein, we run two rounds of PSI-BLAST against
the version of the redundancy-reduced NR database described above, with parameters b =
3000 (maximum number of hits), e = 10−3 (expectation of a random hit) and h = 10−10

(expectation of a random hit for sequences used to generate the PSSM). We then run a third
round of PSI-BLAST against the PDB using the PSSM generated in the first two rounds.
In this third round we deliberately use a high expectation parameter (e = 10) to include
hits that are beyond the usual Comparative Modelling scope (e < 0.01 at CASP6 [25]). We
further remove from each set of hits thus found all those with sequence similarity exceeding
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95% over the whole query, to exclude PDB resubmissions of the same structure at different
resolution, other chains in N-mers and close homologues.

The distribution of sequence similarity of the best template, and average template sim-
ilarity is plotted in figure 8. Roughly 14% of the proteins have no hits at more than 10%
sequence similarity. About 19% of all proteins have at least one very high quality (better
than 90% similarity) entry in their template set. Although the distribution is not uniform,
all similarity intervals are adequately represented: for about 41% of the proteins no hit is
above 30% similarity; for nearly 24% of the proteins the best hit is in the 30-50% similar-
ity interval. The average similarity for all PDB hits for each protein, not surprisingly, is
generally low: for roughly 73% of all proteins the average identity is below 30%.

It should be noted that template generation is an independent module in the systems. We
are currently investigating whether more subtle strategies for template recognition would
still benefit contact map predictions, with or without retraining the systems on the new
template distributions.

Figure 8: Distribution of best-hit (blue) and average (red) sequence similarity in the PSI-
BLAST templates for the S2171 set. Hits above 95% sequence similarity excluded.

4.5.4 Training/testing protocol

The predictors of contact maps rely on predictions of secondary structure, solvent accessi-
bility and contact density [8]. True structural information was used for training in both ab
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10 20 30 40 50 60 70 80 90 ≥
90

All

12AI 85.9 87.5 86.8 85.6 87.2 86.5 86.2 86.1 86.4 87.3 86.8

12TE 85.3 87.8 91.3 93.6 95.7 96.0 95.8 96.4 97.0 97.3 93.2

Table 3: Percentage of classified predicted residue pairs for the ab initio (12AI ) and tem-
plate based 12 Å predictor (12TE) as a function of sequence identity to the best template.
Template sequence identity 10 means all proteins that have a best hit template in the identity
range [0, 10) %, All is the complete set.

10 20 30 40 50 60 70 80 90 ≥
90

All

12AI 85.8 87.6 88.1 89.9 92.0 90.8 93.1 90.5 94.0 94.0 87.9

12TE 85.3 87.1 88.4 91.4 92.8 92.8 94.0 94.3 94.8 94.4 87.7

Table 4: Identical to table 2 except only calculated for non template regions of the map.

initio and template based systems. For testing, we used predictions from our servers: Porter,
PaleAle and BrownAle predicting secondary structure, solvent accessibility and contact
density respectively. The ab initio models use ab initio secondary structure, solvent acces-
sibility and contact density predictions. The template models use template-based secondary
structure and solvent accessibility and ab initio contact density predictions (template-based
contact density remains to be investigated).

All our experiments are carried out in 5-fold cross validation. The same dataset and
multiple alignments are used to train the ab initio and template based secondary structure
predictor Porter, solvent accessibility predictor PaleAle and the contact density predictor
BrownAle. By design, these were trained using the same 5 fold split as the map predic-
tors, therefore removing a trained fold while testing was a simple procedure and all 1D
predictions are by models that were trained on a dataset split independent on the query.

The accuracy measure for all classes is calculated in order to compare the ab initio and
template based models:

Accuracy =
C−1∑
c=0

correctc
totalc

(9)

where C is the total number of classes. All the accuracy values are calculated as a function
of the best hit template found in the PDB to the query sequence. The best hit was determined
by sequence identity between a template sequence and the query sequence.

4.6 Results and discussion

Table 3 reports the comparison between 12Å ab initio and template based predictions (12AI

vs. 12TE) as a function of sequence identity to the best PDB hit. The only decrease in per-
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10 20 30

12TE 79.2 86.8 92.0

Baseline 84.0 89.2 92.1

Table 5: Percentage of classified predicted residue pairs for 12TE when only considering
the residues covered by the best template. Baseline is a predictor that copies the contact
assignment from the best hit template.Template sequence identity 10 means all proteins
that have a best hit template in the identity range [0, 10) %.

10 20 30 40 50 60 70 80 90 ≥
90

All

MAI 59.3 59.4 58.4 57.3 58.3 57.4 58.3 58.5 58.2 59.9 58.8

MTE 60.2 64.2 75.9 82.5 87.8 88.8 88.1 89.7 91.5 92.1 80.8

Table 6: Percentage of classified predicted residue pairs for the ab initio (MAI ) and template
based Multi class predictor (MTE) as a function of sequence identity to the best template.
Template sequence identity 10 means all proteins that have a best hit template in the identity
range [0, 10) %, All is the complete set.

10 20 30 40 50 60 70 80 90 ≥
90

All

MAI 59.0 58.3 61.8 64.8 71.6 69.4 75.0 71.4 75.7 75.5 61.1

MTE 60.3 60.7 65.7 71.2 76.4 75.5 80.3 82.1 80.2 79.4 63.8

Table 7: Identical to table 5 except only calculated for non template regions of the map.

10 20 30

MTE 60.2 69.8 78.8

Baseline 54.8 67.1 78.6

Table 8: Percentage of classified predicted residue pairs for MTE when only considering
residues covered by the best template. Baseline is a predictor that copies the class assign-
ment from the best hit template. Template sequence identity 10 means all proteins that have
a best hit template in the identity range [0, 10) %
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formance is in the [0,10)% identity range, where the accuracy slightly decreases by 0.6%.
However, the same results for multi class maps show that there is never a decrease in per-
formance (Table 6). A role in this is played by the quality of predictions in regions not
covered by the templates (reported in Tables 4 and 7). In these areas, for a sequence simi-
larity of 20% and greater both 12TE and MTE perform better than, respectively, 12AI and
MAI . However, for lower similarity, 12AI outperforms 12TE on areas not covered by tem-
plates, while MTE still improves on MAI . This may be either due to more balanced nature
of the problem, easier contextual propagation in the multi-class case (the narrower class
ranges impose stricter distance constraints among neighbours), or a combination of both.
Ultimately, templates improve multi-class predictions in all regions of sequence similarity
(including [0,10)%), both for regions covered and regions not covered by templates.

Tables 5 and 8 report the comparison between template based predictions and a baseline
for 12Å and multi- class respectively. The baseline simply calculates the class for position
(i, j) from the coordinates in the best template. We also tested different baselines in which,
instead of just the top template, the top 10 templates and all templates were used to get the
class by a majority vote among the templates covering each template. We tested both an
unweighed vote and a vote in which each template is weighed by its sequence similarity
to the query, cubed. The latter weighing scheme is identical to the one used to present the
templates to the neural networks (see equation 7). In all cases the baseline is worse than the
best hit baseline, therefore the results are not reported here. We only report the predictions
vs. baseline for the [0,30)% templates, since above 30% identity, as expected, the results
are essentially the same. In this twilight region, where it is difficult to extract information
from templates, MTE outperforms the baseline, however 12TE does not.

The multi-class results are clearly encouraging, outperforming the baseline (Table 8),
always improving on non-template regions (Table 7) and overall maps (Table 6). Figure 10
and 11 show an example of a map predicted for a low best hit sequence identity of 22.7%.

4.7 Modelling protein structures from predicted maps

In Figure 9, the average RMSD vs sequence length is shown for models for set S258 derived
from true 4-class contact maps (stars), from MTE maps (squares) and from MAI maps (Xs),
together with the baseline (crosses). The baseline represents a structure collapsed into its
center of mass. Note that no templates are allowed that show a sequence identity greater
than 90% to the query. Hence, the MTE results are based on a mixture of good, bad and no
templates, akin to the distribution one would expect when presented with a protein sequence
that is not in the PDB. The distribution of templates for S258 (not reported) resembles
closely the one for the training/testing set, reported in Figure 8. It is also important to note
that the results are an average of 10 reconstructions. If more reconstructions were run and,
especially, if these were ranked, the results would likely improve considerably. The average
reconstruction RMSD for MTE is 9.46Å and the average TM score 0.51. If the best of the
10 reconstructions is picked, these improve to 8.59Å and 0.55, respectively.

Reconstructions based on 4-class maps are significantly better than those from bi-
nary maps. Tested on both ab initio and homology-based 4-class maps, results show that
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Maps RMSD TM-score
MAI 14.60 0.27
MTE 9.46 0.51

Table 9: Reconstruction algorithm results for models derived from multi-class predicted
contact maps with (MTE) and without (MAI ) allowing homology information. Note that,
since no templates are allowed that show a sequence identity greater than 90% to the query,
the MTE results are based on a mixture of good, bad and no templates (see Figure 8 for a
sample distribution of template quality). The reported values are the average over the 10
runs of simulated annealing.

homology-based predictions are generally more accurate than ab initio ones even when ho-
mology is dubious. For sequence similarity above 30% the predictions’ TM-score is on
average slightly above 0.7 indicating high reliability, is approximately 0.45 in the 20-30%
interval, and 0.27 in the region below 20%. If reconstruction performances are measured
on the S258 set without allowing homology information at any stage (pure ab initio pre-
dictions) the average TM-score is 0.27, with 43 of the 258 structures above a TM-score of
0.4.

5 Conclusions

In this work we have described a machine learning pipeline for high-throughput prediction
of protein structures, and have introduced a number of novel algorithmic ideas.

First, based on the observation that protein binary contact maps are somewhat lossy
representations of the structure and yield only relatively low-resolution models, we have
introduced multi-class maps, and shown that, via a simple simulated annealing protocol,
these lead to much more accurate models, with an average RMSD to the native structure of
just over 2Å and a TM score of 0.83.

Secondly, extending on ideas we have developed for predictors of secondary structure
and solvent accessibility [36] we have presented systems for the prediction of binary and
multi-class maps that use structural templates from the PDB to yield far more accurate
predictions than their ab initio counterparts. We have also shown that multi-class maps lead
to a more balanced prediction problem than binary ones. Although it is unclear whether
because of this, or because of the nature of the constraints encoded into them, template-
based systems for the prediction of multi-class maps we tested are capable of exploiting
both sequence and structure information even in cases of dubious homology, significantly
improving over their ab initio counterpart well into and below the twilight zone of sequence
identity. This turns out to be only partly true, at least in our tests, for binary contact map
predictors. Moreover, multi-class map predictions are far more accurate than the maps of
the best templates for all the twilight and midnight zone of sequence identity, including the
case in which only templates with less than 10% sequence identity to the query are available.
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Conversely, for binary contact maps, the best template is on average more accurate than the
prediction for all the [0%,30%) region of sequence identity.

Finally we have shown that template-based predictions of multi-class maps lead to fair
to good predictions of protein structures, with an average TM score of 0.7 or higher to the
native when good templates are available (sequence identity greater than 30%), and of 0.45
in the [20%, 30%) identity region. Ab initio predictions are still, on average, poor, at an
average TM score of 0.27. Nevertheless, it is important to note how the component for ho-
mology detection in this study is basic (PSI-BLAST), and entirely modular, in that it may
be substituted by any other method that finds templates without substantially altering the
pipeline. Whether more subtle homology detection or fold recognition components could
be substituted to PSI-BLAST, with or without retraining the underlying machine learning
systems, is the focus of our current studies. The overall pipeline, including the template-
based component, is available at the URL: http://distill.ucd.ie/distill/. Protein structure pre-
dictions are based on multi-class maps, and templates are automatically provided to the
pipeline when available.

6 Acknowledgments

This work is supported by Science Foundation Ireland grant 05/RFP/CMS0029, grant
RP/2005/219 from the Health Research Board of Ireland and a UCD President’s Award
2004.
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Figure 9: 4-class contact maps: average RMSD vs sequence length is shown for models
derived from true contact maps (blue stars), from predicted contact maps using information
derived from homologues (MTE) (purple squares) and from ab initio predicted contact
maps (green Xs), together with the baseline (red crosses). Note that, since no templates are
allowed that show a sequence identity greater than 90% to the query, the MTE results are
based on a mixture of good, bad and no templates (see Figure 8 for a sample distribution of
template quality).
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Figure 10: Protein 1B9LA 12 Å contact maps for ab initio (left) and template-based (right)
predictions. The best template sequence identity is 22.7%. The top right of each map is the
true map and the bottom left is predicted. In the predicted half white and red are true neg-
ative and positive respectively, blue and green are false negative and positive respectively.
The three black lines correspond to |i− j| ≥ 6, 12, 24.

Figure 11: Protein 1B9LA Multi class contact maps for ab initio (left) and template-based
(right) predictions. The best template sequence identity is 22.7%. The top right of each
map is the true map and the bottom left is predicted. In the predicted half red, blue, green
and yellow correspond to class 0, 1, 2 and 3 respectively. The greyscale in the predicted
half corresponds to falsely predicted classes. The three black lines correspond to |i− j| ≥
6, 12, 24.


