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Adaptive Virtual Screening of Drug-Like Molecules
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Graphs
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Abstract—Virtual screening of drug-like molecules is a very
important task in drug design, but it is generally time consuming
and expensive. In fact, the common practice of virtual screen-
ing requires a feature selection process that is performed by
experts. The time necessary to accomplish it is long and often
unpredictable. Moreover, given that even experts can fail,this
hand-crafted selection process can lead to the loss of molecular
properties that may be essential to predict the desired target
point. Therefore, providing a time efficient and cost-free virtual
screening method for predicting molecular endpoints may bea
key step in the development of new drug design approaches.
Here we present a screening method based on a neural network
model called Recursive Neural Networks for Undirected Graphs
(UGRNN), where the feature selection process requires no human
intervention. We test the method on a broad range of regression
tasks (mostly concerning prediction of solubility and melting
point for small molecules). The results we obtain generallymatch
or surpass the state of the art.

Index Terms—drug design, virtual screening, recursive neural
network, undirected graph, regression, molecular endpoint.

I. I NTRODUCTION

OVER the last few decades numerous methods have been
developed to perform virtual screening of chemical com-

pounds. Most of these methods belong to the broad category
of QSAR (Quantitative Structure-Activity Relationship).The
aim of QSAR is to find an appropriate functionF (), which,
given a structured representation of a molecule, predicts its
biological activity [1]. QSAR’s most general form is:

Activity = F (structure) (1)

The definition of functionF () is a complex task which can be
factorized into two sub-problems: theencoding problemand
themapping problem. The former refers to the task of mapping
a molecule, which is naturally described as an undirected
graph representing its chemical structure, into an array of
features. This step is necessary in order to obtain a represen-
tation which is suitable for standard regression/classification
tools like Artificial Neural Networks (ANN) or Support Vector
Machines (SVM). The latter consists in mapping the array
of features into the property of interest and, as mentioned,
is generally a regression or a classification task, which may
be tackled by one of numerous algorithmic tools that are
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available. According to this view,F () can be decomposed
as follows [1]:

F () = g(t()) (2)

where t() is the encoding function andg() is the mapping
function. The wayt() is defined is rather open-ended and
ultimately one could argue that the essence of the problem is
precisely findingt() or, equivalently, that once an informative
t() is found for the problem at hand, the following step is
trivial. In most casest() is hand-crafted and requires the
intervention of experts. If this is the case, findingt() is
usually time consuming and, given that even experts may fail,
or overlook, may lead to the loss of important information
to predict the desired target. In [2], [3] and [4] a similar
approach is followed to predict acqueous solubility by a Multi
Layer Perceptron (MLP) and SVM, respectively. In [5] a large
set of molecular features, including physical and graphical
properties, is compressed by Principal Component Analysis
(PCA) to be the input to an ANN, with the aim of predicting
melting points. In [6] numeric codes for alkanes are applied
to provide an input for an MLP in order to predict melting
points and in [7] a set of 2D and 3D molecular descriptors for
each molecule is calculated, to predict melting points using
a method based on partial least squares Projection to Latent
Structures (PLS).
Among all current state-of-the-art automated methods (i.e.,
where the functiont() is defined by a fully automated compu-
tational process), one of special interest is represented by N-
Dimensional Kernels as described in [8]. In particular, when
the number of examples in the training set is large enough
(greater than 1000), 2D spectral kernels proved to yield robust
results, generally better than 3D kernels.
Here we compare the performances of a different automated
method which we have developed, Recursive Neural Network
for Undirected Graphs (UGRNN)[9], against state-of-the-art
2D kernels. In order to do so we select several benchmarks on
which 2D kernels were assessed, and test the UGRNN model
on them in the same experimental setting. We implement a
simple stationary UGRNN model (stationary in that one single
network/function processes all parts of the molecular structure)
where the input is limited to the atom label and bond type.
No other descriptors or hand-crafted features are input to the
model, which therefore needs to find its own encoding and
feature set without any human expert intervention. In brief, the
feature selection process is fully automated in our approach.

In the tests we present in this article, simple stationary
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Fig. 1. UGRNN model of Cisplatin molecule

UGRNN models outperform or match state-of-the-art 2D
kernels. According to the protocol we followed, a stationary
UGRNN generally matches and in some cases outperforms
a more complex non-stationary model (see[9]) which has in
addition a more informative atom label. From our tests we
observe that the stationary UGRNN is able to extract, from the
graph strucuture defining a chemical compound, the molecular
feautures which are necessary to predict a given target point.
We are currently researching whether these features, whichare
a sub-product of training and come as a fixed-width array or
real numbers, may be informative descriptors for the molecular
space as a whole, and may be used to map this space and
compute similarity between molecules.

II. A PPROACH

The functionF () mapping a molecule onto a property can
be factorized into two functions: the encoding functiont() and
the mapping functiong(). t() is a function from the domain
of the molecular structureS to the domain of molecular
descriptorsD:

t : M → D, D ∈ R
m, (3)

g() is a function from the domain of the molecular descriptors
D to the domain of the target propertiesT :

g : D → T, D ∈ R
m, T ∈ R

n. (4)

In order to create an automated algorithm that can extract the
molecular descriptors from the graph describing the molecule,
we choose to approximate functiont() by a Feed Forward
Neural Network (FFNN). In order to train the network by
gradient descent through the backpropagation algorithm, it is
necessary to represent the input domain as a Directed Acyclic
Graph (DAG)[10], [11]. However a molecule is naturally de-
scribed as an Undirected Graph (UG), where atoms represent
nodes and bonds represent edges (as in the Cisplatin molecule
in the top-left corner of Figure 1). We solve the problem by
factorising the UG into as many DAGs as the number of atoms
in the molecule, and retrieve contextual information from the
root node of each DAG to obtain a single vector of molecular
descriptors, as represented in Figure 1. In the following section
we describe UGRNN in detail.

III. M ETHOD

The process for generating the UGRNN model of a
molecule is here described. First we factorise a UG into as

many Directed Acyclic Graphs (DAGs) as there are atoms
in the molecule, so that each node/atom is the root of one
DAG. Thekth DAG is obtained from the UG representing the
molecule, by directing all its edges in the graph towards its
kth atomvk, along the shortest path.

At each node in thekth DAG a state, or contextual vector,
is stored, which is a functionM (G) of the node label (atom
identity in this case, but potentially anything else we know
about an atom), and the states of its parents (the nodes up-
stream of the vertex, along the directed edges). More formally,
the state of each vertexv in the kth DAG is a hidden vector
Gv,k describing the contextual information upstream of vertex
v as:

Gv,k = M (G)(iv, Gpa1
[v,k]

, ..., Gpan
[v,k]

), (5)

where iv ∈ R
l is the label associated to vertexv (i.e., the

input information about atomv) andpa1
[v,k], ..., pan

[v,k] are the
parents of vertex v in thekth DAG. The functionM (G) is the
same for each DAG and each vertex, resulting in a stationarity
hypothesis which can be regarded as a form of weight sharing
to keep the number of free parameters in the model low. Notice
how, in order for this representation to be possible, there must
be an upper boundn to the number of parents a node can have
(in the application presented in this work, typicallyn = 4).
If a node hasm parent nodes withm < n, blank vectors
(all zeroes) are passed to functionM (G) as its lastn − m
arguments. If a node has no parents, onlyiv is input to the
function and all the inputs reserved for contextual information
are blank.

As there is a path from each atom in a DAG to the root
of the DAG, the state of the root receives a contribution from
each of the nodes in the DAG. To obtain a representation for
the whole graph, we add up the states of the root nodes of
all DAGs. That is, the overall description of the molecule is
obtained as the sum of descriptions of the molecule “as seen”
from each of its nodes/atoms. More formally,Gstructure is
defined as:

Gstructure =

N∑

k=1

Gvk,k (6)

Gstructure is a global description of the molecule (a feature
vector), which we map into the property of interest via a
mapping functionM (O), as follows:

o = M (O)(Gstructure) (7)

It is important to notice that: both the encoding functionM (G)

and the mapping functionM (O) are approximated by FFNN
so that the whole model can be trained by gradient descent,
because it is itself an FFNN; the process of extraction of the
molecular descriptors from the molecular structure depends
on the minimization of the error between predicted and target
values (a sum of squares for regression tasks, a relative
entropy for classification), resulting in an adaptative form
of compression of the molecular structure,property driven
and fully automated. That is, if training is successful, the
Gstructure vector will be the description of the molecule that
yields the best prediction according to the errors adopted.
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TABLE I
LEAVE-ONE-OUT SQUARED CORRELATION COEFFICIENTRESULTS FOR

THE ALKANES AND BENZODIAZEPINES(BZD) AND BERGSTR̈OM
DATASETS

BZD alkanes Bergström
UGRNN 0.52 0.98 0.40
2D Kernels[8] 0.69 0.94 0.36

While in preliminary tests in [9] we implemented a model
where the stationarity hypotesis is relaxed, meaning that
dedicated transition functionsM (G) are associated to the most
common bonding patterns for an atom, here we decide not to
relax the stationarity constraint with the aim of avoiding lack
of generality and measuring the baseline performances of a
UGRNN.

In [9] each atomic labeliv includes: the element type, the
atom charge, the Smallest Set of Smallest Rings, hybridisation
state and aromaticity for an atom. Here we limit our input
to atom and bond type, in order to discover what the model
can learn from the molecular structure itself and to obtain a
more reliable comparison with the perfomances of 2D Kernels
described in [8].

Since the model presented in this work can be considered
as a Feed Forward Neural Network with weight sharing, we
train the UGRNN by gradient descent via the backpropagation
algorithm. In particular, given the large amount of weight
sharing, we need to modify gradient descent similarly to [10],
[11]. Thus, the gradient of the error wrt a weightdw is applied
if |dw| ∈ [0.1,1], otherwise it is set tosign(dw) if |dw| > 1
or to 0.1 ∗ sign(dw) if |dw| < 0.1.

IV. RESULTS

A. Small Datasets

Benzodiazepines QSAR. The dataset[12] consists of 72
1,4-benzodiazepine-2-ones. The target point for each molecule
is represented by its measured affinity toward theγ-
aminobutyric acid. In this dataset we obtain a Leave One
Out Pearson’s squared correlation coefficient of 0.52 whichis
lower than the one declared with 2D Kernels (0.69). However
if we split the dataset in training and test set as in [1] we obtain
a squared correlation coefficient of 0.98 which is the same
value obtained with 2D Kernels in [8]. This vast difference
in performances puts into question the stability of the results
obtained by other authors and in this work, as deviations
of over 40% are observed simply by splitting the dataset in
different training and testing subsets.

Alkanes Boiling Point. The dataset [6] consists of the first
150 noncyclic alkanes (CnH2n+2 with n < 11). The target
point for each molecule is representend by its boiling point.
In this dataset we obtain a Leave One Out Pearson’s squared
correlation coefficient of 0.98 which is higher than the one
obtained with 2D Kernels (0.94).

Bergström. The dataset[7] consists of 277 druglike com-
pounds. The target point for each molecule is representend
by its melting point. In this dataset we obtain a Leave One
Out Pearson’s squared correlation coefficient of 0.41 whichis
higher than the one obtained with 2D Kernels (0.36).

TABLE II
PREDICTION PERFORMANCE FORACQUEOUSSOLUBILITY IN 10 FOLD

CROSS VALIDATION ON DELANEY DATASET

r
2 RMSE AAE

UGRNN 0.92 0.59 0.43
Non Stationary UGRNN[9] 0.91 0.61 0.44
Delaney[2] - - 0.75
GSE[13] - - 0.47
2D Kernel (param d=2)[8] 0.91 0.61 0.44

TABLE III
PREDICTION PERFORMANCE FORACQUEOUSSOLUBILITY IN 10 FOLD

CROSS VALIDATION ON HUUSKONENDATASET

r
2 RMSE AAE

UGRNN 0.93 0.55 0.35
Non Stationary UGRNN[9] 0.91 0.43 0.35
Frolich[14] 0.90 - -
2D Kernel (param d=2)[8] 0.91 0.15 0.11

B. Large Datatasets

Aqueous Solubility (Delaney). The dataset[2] consists of
1144 low molecular weight compounds. The target point for
each molecule is representend by its acqueous solubility in
logM/L. Results in table 2 show that our model outperforms
by all metrics both 2D kernels and the the non stationary
UGRNN model with a more complex atom label.

Aqueous Solubility (Huuskonen). The dataset[3] consists
of 1026 compounds. The target for each molecule is rep-
resented by its acqueous solubility. Table 3 shows that our
model outperforms in correlation both 2D kernels and the non
stationary UGRNN with a more complex atom label, while
the results are slightly lower (albeit nearly perfect) by the two
other metrics.

Melting Point (Karthikeyan) . The dataset consists of 4173
compounds annotated with melting points and a wide range of
additional properties. In our tests we limit the molecular target
to the melting point. Results in table 4 show that UGRNN,
non stationary UGRNN[9] and 2D kernels[8] achieve nearly
identical results, with the best performance by a slight margin
being achieved by non stationary UGRNN.

V. CONCLUSIONS

In this article we have presented a broad assessment of
UGRNN, a model of recursive neural network we have de-
veloped, which is capable of dealing with undirected graphs,
on a set of benchmarks composed of chemical compounds. No
feature set has to be designed for UGRNN, as the model is
capable of obtaining a fixed-width representation of a molecule
(Gstructure) by design, without human intervention in the
process. Because of this, prediction of properties or activities

TABLE IV
PREDICTION PERFORMANCE FORMELTING POINT USING 10-FOLD

CROSS-VALIDATION ON THE 4173 COMPOUNDS IN THEKARTHIKEYAN

DATASET

r
2 RMSE AAE

UGRNN 0.56 42.6 33.2
Non Stationary UGRNN[9] 0.57 42.5 32.6
Karthikeyan[5] 0.42 52.0 41.3
2D Kernel (param d=10)[8] 0.56 42.7 32.6
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of chemical compounds may be automated in full, as the
only requirement to build a predictor is the availability ofa
set of examples for which the property of interest has been
determined experimentally. This eliminates the need for expert
knowledge and a potentially time-consuming and fault-prone
initial stage in which features that are informative for thetask
at hand have to be indentified. In our tests UGRNN generally
match or outperform state-of-the-art models which operateon
the 2D representation of a molecule, including systems in
which more complex, and theoretically more informative, atom
labels are devised. It should also be noted that UGRNN may
easily accommodate more informative descriptors, both at the
atom level (by simply extending the input corresponding to
the label of an atom), and at a molecular level (by providing
supplementary information alongside theGstructure as inputs
to the output network), i.e. although UGRNN are capable
of working with only minimal human intervention, if expert
knowledge is available it may be included into the prediction
process.
We are currently extending our research in three concurrent
directions: testing UGRNN with more informative input de-
scriptors; evaluating the ability ofGstructure to describe the
space of molecules; including 3D information by an extension
of UGRNN. The second direction is of particular interest, as
UGRNN provide a fixed-width representation of a molecule
which may be used to gauge similarity between compounds
without resorting to complex graph matching techniques.
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