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Adaptive Virtual Screening of Drug-Like Molecules
by Recursive Neural Networks for Undirected
Graphs

Alessandro Lusci, lan Walsh, and Gianluca Pollastri

Abstract—Virtual screening of drug-like molecules is a very available. According to this viewF'() can be decomposed
important task in drug design, but it is generally time consuming  as follows [1]:
and expensive. In fact, the common practice of virtual scre
ing requires a feature selection process that is performed yb F() = g(t() )
experts. The time necessary to accomplish it is long and ofte i . . i .
unpredictable. Moreover, given that even experts can failthis where () is the encoding function ang() is the mapping
hand-crafted selection process can lead to the loss of moldar function. The wayt() is defined is rather open-ended and
properties that may be essential to predict the desired targt ultimately one could argue that the essence of the problem is
point. Therefore, providing a time efficient and cost-free vrtual precisely findingt() or, equivalently, that once an informative

screening method for predicting molecular endpoints may bea - . .
key step in the development of new drug design approaches.t() is found for the problem at hand, the following step is

Here we present a screening method based on a neural network ffivial. In most casesi() is hand-crafted and requires the
model called Recursive Neural Networks for Undirected Grafns  intervention of experts. If this is the case, finding) is
(UGRNN), where the feature selection process requires no man  ysually time consuming and, given that even experts may fail
'tg;ekr;’egﬂggt-l)\/’v‘zgﬁimﬁ] ;Etrgz?cggna;ms%‘?uﬁﬂge :r‘:(;eg::ﬁre]g or overlook, may lead to the loss of important information
point for small molecules). The results we obtain generallynatch to pred'Ct_the desired targ‘?t- In [2], [3] and _[_4] a similar
or surpass the state of the art. approach is followed to predict acqueous solubility by a fiul
Layer Perceptron (MLP) and SVM, respectively. In [5] a large
set of molecular features, including physical and graphica
properties, is compressed by Principal Component Analysis
(PCA) to be the input to an ANN, with the aim of predicting
|. INTRODUCTION melting points. In [6] numeric codes for alkanes are applied

VER the last few decades numerous methods have bderprovide an input for an MLP in order to predict melting

developed to perform virtual screening of chemical confoints and in [7] a set of 2D and 3D molecular descriptors for
pounds. Most of these methods belong to the broad categé@gh molecule is calculated, to predict melting points gisin
of QSAR (Quantitative Structure-Activity Relationshipjhe @ method based on partial least squares Projection to Latent
aim of QSAR is to find an appropriate functidr(), which, Structures (PLS).
given a structured representation of a molecule, predists Among all current state-of-the-art automated methods, (i.e

Index Terms—drug design, virtual screening, recursive neural
network, undirected graph, regression, molecular endpoin

biological activity [1]. QSAR’s most general form is: where the functiort() is defined by a fully automated compu-
o tational process), one of special interest is represengeld-b
Activity = F(structure) (1) Dimensional Kernels as described in [8]. In particular, whe

The definition of functionZ’() is a complex task which can beth€ number of examples in the training set is Iarge enough
factorized into two sub-problems: trencoding problenand (greater than 1000), 2D spectral kernels proved to yieldisbb
sults, generally better than 3D kernels.

themapping problemThe former refers to the task of mappin € )
re we compare the performances of a different automated

a molecule, which is naturally described as an undirect hod which h develobed ) | "
graph representing its chemical structure, into an array B¥thod which we have developed, Recursive Neural Networ

features. This step is necessary in order to obtain a rep)Jresfé?r Undirected Graphs (UGRNN)[9], against state-of-the-a
tation which is suitable for standard regression/clasibn 2D_kernels. In order to do so we select several benchmarks on
tools like Artificial Neural Networks (ANN) or Support Veato Which 2D kernels were assessed, and test the UGRNN model

Machines (SVM). The latter consists in mapping the arr)]! thém in the same experimental setting. We implement a
of features into the property of interest and, as mention mple stationary UGRNN model (stationary in that one sing

is generally a regression or a classification task, which m2 twork/function processes all parts of the molecularcstme)

be tackled by one of numerous algorithmic tools that algnere the mpu_t is limited to the atom label and t_)ond type.
No other descriptors or hand-crafted features are inputeo t
A.Lusci and G.Pollastri are with the School of Computer Beieand In- model, which therefore needs to find its own encoding and
formatics and Complex and Adaptive Systems Laboratoryyétsity College feature set without any human expert intervention. In bthed
Dublin, Belfield, Dublin 4, Ireland. feat lecti is full t ted i
I.Walsh is with the Department of Biology, University of Red Padova eature selection process IS . ully .au On_]a e !n our apmoac
35131, ltaly. In the tests we present in this article, simple stationary
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.\./. et e many Directed Acyclic Graphs (DAGs) as there are atoms
W@ in the molecule, so that each node/atom is the root of one
DAG. Thek!" DAG is obtained from the UG representing the
— — molecule, by directing all its edges in the graph towards its
k" atomuy, along the shortest path.

At each node in thé'* DAG a state, or contextual vector,
is stored, which is a functiod/(%) of the node label (atom
identity in this case, but potentially anything else we know
about an atom), and the states of its parents (the nodes up-
stream of the vertex, along the directed edges). More fdymal

Fig. 1. UGRNN model of Cisplatin molecule the state of each vertexin the k' DAG is a hidden vector
G, describing the contextual information upstream of vertex
v as:

UGRNN models outperform or match state-of-the-art 2D Gop = M (iv, Gpa[lv’k] - Gpa[z,k])a (5)

kernels. According to the protocol we followed, a statignar

UGRNN generally matches and in some cases outperforiierei, e R’ is the label associated to vertex(i.e., the
a more complex non-stationary model (see[9]) which has jAput information about atom) andpaf, ;... par, ,; are the
addition a more informative atom label. From our tests Wﬁarents of vertex v in thet” DAG. The i‘unctionM(G) is the

observe that the stationary UGRNN is able to extract, froe t'%ame for each DAG and each vertex, resulting in a statignarit

graph strucut_ure defining a chemical co_mpour_ld, the momcu}ﬁ/pothesis which can be regarded as a form of weight sharing
feautures which are necessary to predict a given target.poyj keep the number of free parameters in the model low. Notice

We are currently resgqrchmg whether thesg featu_res, veieeh how, in order for this representation to be possible, thewmstm
a sub-product of training and come as a fixed-width array BE an upper bound to the number of parents a node can have
real numbers, may be informative descriptors for the mdércu (in the application presented in this work, typicatly— 4).
space as a whole, and may be used to map this space gndl o4e hasm parent nodes withn < n, blank vectors
compute similarity between molecules. (all zeroes) are passed to functidd(%) as its lastn — m
arguments. If a node has no parents, ohlyis input to the
Il. APPROACH function and all the inputs reserved for contextual infotiora
The functionF () mapping a molecule onto a property camre blank.
be factorized into two functions: the encoding functiohand As there is a path from each atom in a DAG to the root
the mapping functiory(). ¢() is a function from the domain of the DAG, the state of the root receives a contribution from
of the molecular structureS' to the domain of molecular each of the nodes in the DAG. To obtain a representation for
descriptorsD: the whole graph, we add up the states of the root nodes of
t:M—D,DeR™, (3) all DAGs. That is, the overall description of the molecule is

¢() is a function from the domain of the molecular descriptofdPtained as the sum of descriptions of the molecule “as seen”
D to the domain of the target properti@s from each of its nodes/atoms. More formal¥etrycture 1S

defined as:
g:D—T,DeR™TeR". 4)

In order to create an automated algorithm that can extract th
molecular descriptors from the graph describing the mdégcu . o
we choose to approximate functiait) by a Feed Forward ~Gstructure iS @ global description of the molecule (a feature
Neural Network (FFNN). In order to train the network byvector), which we map into the property of interest via a
gradient descent through the backpropagation algorithis, i MapPpNg functionV/(?), as follows:

necessary to represent the input domain as a Directed A&cycli o M(O>(G ) )
Graph (DAG)[10], [11]. However a molecule is naturally de- - structure

scribed as an Undirected Graph (UG), where atoms represgng important to notice that: both the encoding functigh®)
nodes and bonds represent edges (as in the Cisplatin melegyld the mapping functiod/(©) are approximated by FFNN

in the top-left corner of Figure 1). We solve the problem by that the whole model can be trained by gradient descent,
factorising the UG into as many DAGs as the number of atorggcause it is itself an FFNN; the process of extraction of the
in the molecule, and retrieve contextual information frdm t molecular descriptors from the molecular structure depend
root node of each DAG to obtain a single vector of moleculgfy the minimization of the error between predicted and targe
descriptors, as represented in Figure 1. In the followingise  yajues (a sum of squares for regression tasks, a relative

N
Gstructure — Z Gvk,k (6)
k=1

we describe UGRNN in detail. entropy for classification), resulting in an adaptativenfor
of compression of the molecular structuggpperty driven
. METHOD and fully automatedThat is, if training is successful, the

The process for generating the UGRNN model of &g yuciure VECtOr will be the description of the molecule that
molecule is here described. First we factorise a UG into g&lds the best prediction according to the errors adopted.
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TABLE |
LEAVE-ONE-OUT SQUARED CORRELATION COEFFICIENTRESULTS FOR
THE ALKANES AND BENZODIAZEPINES(BZD) AND BERGSTROM

TABLE Il

PREDICTION PERFORMANCE FORACQUEOUSSOLUBILITY IN 10FOLD

CROSS VALIDATION ONDELANEY DATASET

DATASETS
r2 RMSE AAE
BZD alkanes Bergstrom UGRNN 0.92 0.59 0.43
UGRNN 0.52 0.98 0.40 Non Stationary UGRNN[9]  0.91 0.61 0.44
2D Kernels[8] 0.69 0.94 0.36 Delaney|[2] - - 0.75
GSE[13] - - 0.47

2D Kernel (param d=2)[8] 0.91 0.61 0.44

While in preliminary tests in [9] we implemented a model TABLE IlI
where the stationarity hypotesis is relaxed, meaning thaPREDICTION PERFORMANCE FORACQUEOUSSOLUBILITY IN 10FOLD
dedicated transition function (%) are associated to the most CROSS VALIDATION ON HUUSKONENDATASET

common bonding patterns for an atom, here we decide not to T RMSE  AAE

relax the stationarity constraint with the aim of avoidiagk UGRNN 093 055 035
of generality and measuring the baseline performances of a EOT Sht[alt‘i‘finafy UGRNN[9] 005-)%1 043 035
roliCi . - -

UGRNN.

In [9] each atomic label, includes: the element type, the
atom charge, the Smallest Set of Smallest Rings, hybridisat
state and aromaticity for an atom. Here we limit our inpys | arge Datatasets

to atom and bond type, in order to d|sc_over what the m(.)deIAqueous Solubility (Delaney) The dataset[2] consists of
can learn from the molecular structure itself and to obtain a_L44 low molecular weight compounds. The target point for

more .rellat_)le comparison with the perfomances of 2D Kernei%Ch molecule is representend by its acqueous solubility in
described in [8].

) . . .. logM /L. Results in table 2 show that our model outperforms
Since the model presented in this work can be conside oqM/ b

. : . '6Y all metrics both 2D kernels and the the non stationary
as a Feed Forward Neural Network with weight sharing, GRNN model with a more complex atom label
train Fhe UGRNN py gradignt descent via the backpropag_ationAqueous Solubility (Huuskonen) The dataset[3] consists
algorithm. In particular, given the large amount of Welghéf 1026 compounds. The target for each molecule is rep-
sharing, we need to modify gradient descent similarly td,[10

. . . : resented by its acqueous solubility. Table 3 shows that our
.[11]' Thus, the gradient pf the_error wrt. a Welw is applied model outperforms in correlation both 2D kernels and the non
if |dw| € [0.1,1], otherwise it is set teign(dw) if |dw| > 1

_ ) stationary UGRNN with a more complex atom label, while
or 10 0.1 * sign(dw) if |dw| <0.1. the results are slightly lower (albeit nearly perfect) bg ttvo
other metrics.

Melting Point (Karthikeyan) . The dataset consists of 4173
compounds annotated with melting points and a wide range of
] ) ) additional properties. In our tests we limit the molecuaget

Benzodiazepines QSARThe dataset[12] consists Of 72, the melting point. Results in table 4 show that UGRNN,
1,4-benzodiazepine-2-ones. The target point for eachcutgle ., stationary UGRNN[9] and 2D kernels[8] achieve nearly

s _represented _by its _measured affinity _toward the igentical results, with the best performance by a slightgimar
aminobutyric acid. In this dataset we obtain a Leave O'E)%ing achieved by non stationary UGRNN.

Out Pearson’s squared correlation coefficient of 0.52 wksch
lower than the one declared with 2D Kernels (0.69). However V. CONCLUSIONS
if we split the dataset in training and test set as in [1] wawbt _ )

a squared correlation coefficient of 0.98 which is the same!n this article we have p_resented a broad assessment of
value obtained with 2D Kernels in [8]. This vast differenc GRNN, a model of recursive neural network we have de-

in performances puts into question the stability of the Itesuve|°ped' which is capable of dealing with undirected graphs

obtained by other authors and in this work, as deviatiofd & Set of benchmarks composed of chemical compounds. No

of over 40% are observed simply by spliting the dataset [fatUre set has to be designed for UGRNN, as the model is
different training and testing subsets. capable of obtaining a fixed-width representation of a mdkec

Alkanes Boiling Point. The dataset [6] consists of the firsCstructure) DY deS|gn,_ W'thou,t human Intervention in _the
150 noncyclic alkanes((, Han .o With n < 11). The target process. Because of this, prediction of properties or itietv
point for each molecule is representend by its boiling point
In this dataset we obtain a Leave One Out Pearson’s square% o TABLIhE/I v o Lo-Fo

H P H H H REDICTION PERFORMANCE FORMELTING POINT USING -FOLD
corrglatlon .coeff|C|ent of 0.98 which is higher than the OneCROSS—VALIDATION ON THE 4173 GOMPOUNDS IN THEKARTHIKEYAN
obtained with 2D Kernels (0.94). DATASET

Bergstrom. The dataset[7] consists of 277 druglike com- ,
pounds. The target point for each molecule is representend S— - RTZSE A%Ez
by its melting point. In this dat_aset We_o_btain a Leave One Non Stationary UGRNN[9] 0.57 425  32.6
Out Pearson’s squared correlation coefficient of 0.41 wkdch Karthikeyan[5] 042 520 41.3
higher than the one obtained with 2D Kernels (0.36).

2D Kernel (param d=2)[8] 0.91 0.15 0.11

IV. RESULTS
A. Small Datasets

2D Kernel (param d=10)[8] 0.56 42.7 32.6
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of chemical compounds may be automated in full, as th®] Gianluca Pollastri, Pierre Baldrediction of Contact Maps by Recursive

0n|y requirement to build a predictor is the availability of Neural Network Architectures and Hidden Context Propagatirom All
Four Cardinal Corners Bioinformatics, 18(S1), S62-S70, 2002.

set of gxamples Tor which the_ prgpgrty of interest has beﬁl’l] Pierre Baldi, Gianluca PollastiThe principled Design of Large-Scale

determined experimentally. This eliminates the need fpeex Recursive Neural Network Architectures-DAG-RNNs and thetefh

knowledge and a potentially time-consuming and fault-pron Structure Prediction ProblemJournal of Machine Learning Research,

initial in which f h inf ive for thsk 4, 575-602, 2003.

Initial stage in whic . eatu_r(_eSt at are informative for tas [12] Hadjipavlou-Litina D. Hansch CQuantitative Structure-Activity Rela-

at hand have to be indentified. In our tests UGRNN generally tionship of the Benzodiazepines. A Review and Reevalugtftem. ReV.,

match or outperform state-of-the-art models which opevate __ 94, 1483-1505, 1994. o N

he 2D . f | le. includi [|.13] Jain N. and Yalkowsky SEstimation of the acqueous solubility: Ap-

t e_ representation ot a mo_ecu €, 'nCl_" Ing sy_stems n plication to organic non-electrolyteslournal of pharmaceutical science,

which more complex, and theoretically more informativepat 90:311-316, 2001.

labels are devised. It should also be noted that UGRNN mbfl Frohlich H. Wegner J. K. Zell A.Towards Optimal Descriptor Subset
i dat inf tive d int bothat t Selection with Support Vector Machines in Classificatiod Begression

easily accommodate more informative descriptors, bothe QSAR Comb. Sci., 23, 313-318, 2004.

atom level (by simply extending the input corresponding to

the label of an atom), and at a molecular level (by providing

supplementary information alongside t6§;,.,ciure @S iNputs

to the output network), i.e. although UGRNN are capable

of working with only minimal human intervention, if expert

knowledge is available it may be included into the predittio

process.

We are currently extending our research in three concurre

directions: testing UGRNN with more informative input de:

scriptors; evaluating the ability af s;,ciure t0 describe the

space of molecules; including 3D information by an extemsic

of UGRNN. The second direction is of particular interest, &

UGRNN provide a fixed-width representation of a molecul

which may be used to gauge similarity between compou

without resorting to complex graph matching techniques.
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