Bidirectional Dynamics for Protein Secondary Structure Prediction

Pierre Baldi
Net-ID, Inc.
Los Angeles, CA 90042
+1 323 222 1151
pfbaldi@netid.com

Sgren Brunak
CBS, The Technical
University of Denmark
DK-2800 Lyngby, Denmark
+45 45252477

Paolo Frasconi
DIEE, Universita di Cagliari
09123 Cagliari Italy
+39 070 675 5849

paolo@diee.unica. it

brunak@cbs. dtu.dk

Gianluca Pollastri
DSI, Universita di Firenze
50139 Firenze Italy
+39 055 474 226
docbazz@tin. it

Abstract

For certain categories of sequences, informa-
tion from both the past and the future can
be used for analysis and predictions at time ¢.
This is the case for biological sequences where
the nature and function of a region in a se-
quence may strongly depend on events located
both upstream and downstream. We develop a
new family of adaptive graphical model archi-
tectures for learning non-causal sequence trans-
lations. These architectures employ two chains
of hidden variables that propagate information
from the past and from the future, respectively.
This general idea can be instantiated either as
a stochastic model (generalizing input output
hidden Markov models), or as a neural network
(generalizing recurrent neural networks). We
illustrate the methodology by applying bidirec-
tional models to the problem of protein sec-
ondary structure prediction.

1 Introduction

Connectionist models for learning in sequential domains
are typically dynamical systems that use hidden states
to store contextual information. In principle, these mod-
els can adapt to variable time lags and perform com-
plex sequential mappings. In spite of several successful
applications (mostly based on hidden Markov models),
the general class of sequence learning problems is still
far from being satisfactorily solved. In particular, learn-
ing sequential translations is generally a hard task and
current models seem to exhibit a number of limitations.
One of these limitations, at least for some application
domains, is the causality assumption. A dynamical sys-
tem is said to be causal if the output at (discrete) time
t does not depend on future inputs. Causality is easy to
justify in dynamics that attempt to model the behavior

Giovanni Soda
DSI, Universita di Firenze
50139 Firenze Italy
+39 055 4796 260
giovanni@dsi.unifi.it

of many physical systems. Clearly, in these cases the
response at time ¢ cannot depend on stimulae that the
system has not yet received as input. As it turns out,
non-causal dynamics over infinite time horizons cannot
be realized by any physical or computational device. For
certain categories of finite sequences, however, informa-
tion from both the past and the future can be very use-
ful for analysis and predictions at time ¢. This is the
case, for example, of DNA and protein sequences where
the structure and function of a region in the sequence
may strongly depend on events located both upstream
and downstream of the region, sometimes at considerable
distances. Another good example is provided by the off-
line translation of a language into another one. Even in
the so-called “simultaneous” translation, it is well known
that interpreters are constantly forced to introduce small
delays in order to acquire “future” information within a
sentence to resolve semantic ambiguities and preserve
syntactic correctness.

Non-causal dynamics are sometimes used in other dis-
ciplines (for example, Kalman smoothing in optimal con-
trol or non-causal digital filters in signal processing).
However, as far as connectionist models are concerned,
the causality assumption is shared among all the types
of models which are capable of mapping input sequences
to output sequences, including recurrent neural networks
and input-output HMMs (IOHMMs) (Bengio and Fras-
coni, 1996). In this paper we develop a new family of
non-causal adaptive architectures where the underlying
dynamics are factored using a pair of chained hidden
state variables. The two chains store contextual infor-
mation contained in the upstream and downstream por-
tions of the sequence, respectively. The output at time ¢
is then obtained by combining the two hidden represen-
tations. Interestingly, the same general methodology can
be applied to many different classes of graphical mod-
els for time series, such as recurrent neural networks,
IOHMMs, tree structured HMMs, and switching state

space models (Ghahramani and Jordan, 1997). For con-
creteness, however, in the rest of this paper we focus
exclusively on recurrent networks and IOHMMs.

The main motivation of this work is an application
to the problem of protein secondary structure (SS) in
molecular biology. The task can be formulated as the
translation of amino acid input strings into correspond-
ing output strings that describe an approximation of the
proteins’ 3D folding. The paper is organized as fol-
lows. In Section 2 we shortly review the literature on
SS prediction. In Sections 3 and 4 we introduce the two
novel non-causal architectures: bidirectional IOHMMs
(BIOHMMs) and bidirectional RNNs (BRNNs). In Sec-
tion 5 we report preliminary prediction results on the
SS prediction task, where our system (based on an en-
semble of MLPs and BRNNs) achieves circa the same
performances of the best existing systems.

2 Prediction of protein secondary
structure

Proteins are polypetides chains carrying out most of
the basic functions of life at the molecular level. The
chains can be viewed as linear sequences over the 20-
letter amino acid alphabets that fold into complex 3D
structures essential to their function. One step towards
predicting how a protein folds is the prediction of its sec-
ondary structure. The secondary structure consists of
local folding regularities often maintained by hydrogen
bonds, and traditionally subdivided into three classes:
alpha helices, beta sheets, and coils, representing all
the rest. The sequence preferences and correlations in-
volved in these structures have made secondary struc-
ture prediction one of the classical problems in compu-
tational molecular biology. Moreover, this is one applica-
tion where machine learning methods, particularly neu-
ral networks, have had considerable impact yielding the
best performing algorithms to date (Rost and Sander,
1994).

The basic architecture used in the early work of Qian
and Sejnowski 1988 is a fully connected MLP with a
single hidden layer that takes as input a local fixed-size
window of amino acids (the typical width is 13), centered
around the residue for which the secondary structure is
being predicted. Although this approach has proven to
be quite successful, using a local fixed width window
has well known drawbacks. First, the size of the input
window must be chosen a priori and a fair choice may be
difficult. Second, the number of parameters grows with
the window size. This means that permitting certain far
away inputs to exert an effect on the current prediction
is paid in terms of parametric complexity. Hence, one of
the main dangers of the Qian—Sejnowski architectures is
the overfitting problem.

Most of the subsequent work on predicting protein
secondary structure using NNs has been based on ar-
chitectures with a local window, although a lot of ef-
fort has been put on devising several improvements.
Rost and Sander 1993b; 1993a started with Qian and

Sejnowski’s architecture, but used two methods to ad-
dress the overfitting problem. First, they used early
stopping. Second, they used ensemble averages (Hansen
and Salamon, 1990; Krogh and Vedelsby, 1995) by
training different networks independently, using differ-
ent input information and learning procedures. But
the most significant new aspect of their work is the
use of multiple alignments, in the sense that profiles
(i.e. position-dependent frequency vectors derived from
multiple alignments), rather than raw amino acid se-
quences, are used in the network input. The reason-
ing behind this is that multiple alignments contain more
information about secondary structure than do single
sequences, the secondary structure being considerably
more conserved than the primary sequence. Although
tests made on different data sets can be hard to compare,
the method of Rost and Sander (which resulted in the
PHD prediction server (Rost and Sander, 1993b; 1993a;
1994)) still reaches the top levels of prediction accuracy
(about 72%, measured using 7-fold cross validation).

Another interesting recent NN approach is the work of
Riis and Krogh 1996, who address the overfitting prob-
lem by careful design of the NN architecture. Their ap-
proach has four main components. First, they reduce
the number of free parameters by using an adaptive en-
coding of amino acids, that is, by letting the NN find an
optimal and compressed representation of the input let-
ters. Second, the authors design a different network for
each of the three classes, using biological prior knowl-
edge. For example, in the case of alpha-helices, they
exploit the helix periodicity by building a three-residue
periodicity between the first and second hidden layers.
Third, Riis and Krogh use ensembles of networks and fil-
tering to improve the prediction. The networks in each
ensemble differ, for instance, in the number of hidden
units used. Finally, the authors use multiple alignments
together with a weighting scheme. Instead of profiles,
for which the correlations between amino acids in the
window are lost, predictions are made first from single
sequences and then combined using multiple alignments.
Most important, perhaps, the basic accuracy achieved
is 66.3% when using seven-fold cross-validation on the
same database of 126 non-homologous proteins used by
Rost and Sander. In combination with multiple align-
ments, the method reaches an overall accuracy of 71.3%.
Thus, in spite of a considerable amount of architectural
design, the final performance is practically identical to
(Rost and Sander, 1994).

A more detailed review of the secondary structure pre-
diction problem and corresponding results can be found
in (Baldi and Brunak, 1998). The important informa-
tion however is that there is an emerging consensus of
an accuracy upper bound, slightly above 70-75%, to any
prediction method based on local information only. By
leveraging evolutionary information in the form of mul-
tiple sequence alignments, performance seems to top at
the 72-74% level, in spite of several attempts with so-
phisticated architectures. Thus it appears today that to
further improve prediction results one must use distant

information, in sequences and alignments, which is not
contained in local input windows. This is particularly
clear in the case of beta sheets where stabilizing bonds
can be formed between amino acids far apart. Using
long-ranged information, however, poses two formidable
related challenges: (1) avoiding overfitting related to
large-input-window MLPs (2) being able to detect the
sparse and weak long-ranged signal and combine it with
the significant local information, while ignoring the bulk
of less relevant distant information.

The limitations associated with the fixed-size window
approach can be mitigated using other connectionist
models for learning sequential translators, such as re-
current neural networks (RNNs) or input-output hidden
Markov models (IOHMMs). Unlike feedforward nets,
these models employ state dynamics to store contextual
information and they can adapt to variable width tem-
poral dependencies. Unfortunately there are theoretical
reasons suggesting that, despite an adequate represen-
tational power, RNNs cannot possibly learn to capture
long-ranged information because of the vanishing gradi-
ent problem (Bengio et al., 1994). However, it is rea-
sonable to believe that RNNs fed by a small window of
amino acids can capture some distant information using
much less adjustable weights than MLPs. The usual def-
inition of RNNs only allows “past” context to be used
but, as it turns out, useful information for prediction
is located both downstream and upstream of a given
residue. The architectures described in the next sections
remove these limitations.

3 Bidirectional IOHMMS

3.1 The architecture

A bidirectional IOHMM is a non-causal model of a
stochastic translation defined on a space of finite se-
quences. Like IOHMMSs, the model describes the con-
ditional probability distribution P(Y |U), where U =
Uy,Us,---,Ur is a generic input sequence and Y =
Y1,Ys,---, Y the corresponding output sequence. Al-
though in the protein application described below both
U and Y are symbolic sequences, the theory holds for se-
quences of continuous (possibly multivariate) sequences
as well. The model is based on two Markov sequences
of hidden state variables, denoted by F and B, re-
spectively. For each time step, F; and B; are discrete
variables with realizations (states) in {f*,---,f"} and
{b',---,b™}, respectively. As in HMMs, F; is assumed
to have a causal impact on the next state Fii;. Hence,
F} stores contextual information contained on the left of
t (propagated in the forward direction). Symmetrically,
B; is assumed to have a causal impact on the state By 1,
thus summarizing information contained on the right of
t (propagated in the backward direction). As in other
Markov models for sequences, several conditional inde-
pendence assumptions are made, and can be described
by a Bayesian network as shown in Fig. 1. In particular,

Figure 1: Bayesian networks for the bidirectional

IOHMM.

the following factorization of the joint distribution holds:
T

P(Y,U,F,B) = H P(Yi|Fy, By, Up) P(Ft|Fi—1,Ut)
t=1

“P(By|Biy1, Up) P(Uy) (1)

Two boundary variables, Bri1 and Fp are needed to
complete the definition of the model. For simplicity we
assume these variables are given, i.e. P(Bry; = b') =
P(Fy = f') = 1, although generic (trainable) distri-
butions could be specified. The suggested architectures
can be viewed as a special form of factorial IOHMMs
(with obvious relationships to factorial HMMs and hid-
den Markov decision trees (Ghahramani and Jordan,
1997)) where the state space is factorized into the state
variables F; and B;.

3.2 Parameterization

The parameters of a Bayesian network specify the local
conditional distribution of each variable given its par-
ents. In the case of BIOHMMs, the local conditional
distributions are P(Y;|F;, Bt,U:), P(F:|Fi—1,U;), and
P(B¢|Bt+1,U:). Unconditional distributions for root
nodes (i,e, P(U;)) do not need to be modeled if we as-
sume that there are no missing data in the input se-
quences. A quite common simplification is to assume
that the model is stationary, i.e. the above condi-
tional distributions do not vary over time. Stationar-
ity can be seen as a particular form of parameter shar-
ing that significantly reduces the degrees of freedom of
the model. In the discrete case parameters can be ex-
plicitly represented using conditional probability tables.
Unfortunately the tables can become very large when
nodes have many parents, or variables have large state
spaces. Hence, a more constrained reparameterization
is often desirable and can be achieved using the neu-
ral network techniques. In (Baldi and Chauvin, 1996),
the general approach is demonstrated in the context of
HMMs for protein families using, for the emission prob-
abilities, a single hidden layer shared across all HMM
states. In the case of BIOHMMSs the approach can be
extended by introducing three separate feedforward neu-
ral networks for modeling the local conditional prob-
abilities P(Bt|Bt+1,Ut),P(Ft|Ft_1,Ut),P(Y”Ft,Bt,Ut).

Alternatively, a modular approach using a different
MLP for each state can be pursued (Baldi et al., 1994;
Bengio and Frasconi, 1996). The modular approach is
also be possible with BIOHMMs, although in this case
the number of subnetworks would become n + m + nm
(one subnetwork for each state b?, f7, and one for each

pair (0%, f7)).
3.3 Inference and learning

The basic theory for inference and learning in graph-
ical models is well established, and can readily be
applied to the present architecture. For conciseness,
we focus on the main aspects only. A major differ-
ence between BIOHMMs and IOHMMs or HMMs is
that the Bayesian network for BIOHMMs is not singly
connected. Hence direct propagation algorithms (e.g.,
Pearl’s algorithm (Pearl, 1988)) cannot be used for
solving the inference problem. Rather, we adopt the
general junction tree algorithm (Jensen et al., 1990).
Given the regular structure of the network, the junc-
tion tree can be constructed by hand. Cliques are
{U, Fy, By, Y3 },{Us, Fy, By, Fy_1 }{Uy, Fy, By, Byy1}. As-
suming B; and F; have the same number of states (i.e.,
n = m) space and time complexities are O(kTn?), where
k is the number of input symbols (k = 20 in the case of
proteins). However, it should be noted that often in a
sequence translation problem input variables are all ob-
served (this is the case, at least, in the protein problem)
and thus we know a priori that the nodes U; always re-
ceive evidence, both in the learning and recall phases.
Therefore, we can reduce the complexity by a factor &
since only those entries which are known to be non-zero
need to be stored and used in the absorption computa-
tions. In the case of proteins, this simple trick yields a
speed up factor of about 20, the size of the input amino
acid alphabet. The advantage is even more pronounced
if, instead of a single amino acid, the input U; is ob-
tained by taking a window of amino acids, as explained
later on.

Learning by maximum likelihood is implemented us-
ing a generalized EM algorithm. Basically, sufficient
statistics in the E-step are computed by inference us-
ing the junction tree. The M-step deserves more atten-
tion because of the neural network reparameterization
of the local condition@l probabilities. In fact, maximiz-
ing the function (0,), requires finding a perfect fit of
the neural network parameters @ to the expected val-
ues computed using the “old” parameters 6. Even in
the absence of local minima, a complete maximization
would require an expensive inner gradient descent loop,
inside the outer EM loop. Hence, we resorted to a gen-
eralized EM algorithm, where a single gradient descent
step is performed inside the main loop. The expected
sufficient statistics are used as “soft” targets for train-
ing the neural networks. In particular, for each out-
put unit, the backpropagation delta-error term is ob-
tained as the difference between the unit activations (be-
fore the softmax) and the corresponding expected suf-
ficient statistics. For example, consider the network

for estimating the conditional probability of the out-
put Y;, given the forward state Fi, the backward state
B¢, and the input symbol U;. For each sequence and
for each time step ¢, let a;; be the activation of the i-
th output unit of this network when fed by F, = f7,
B; = b* and Uy = uy (ut is obtained from the train-
ing sequence). Let z; j .+ = exp(ai:)/ (>, explag:). We
have z; ke = P(Y: = y'|Fy = f1,B; = V%, Uy = u,0).
Moreover, let 2; ; 1+ = P(Y; = vy, F, = f/,By =b* U, =
u¢, training data, 9) denote the expected sufficient statis-
tics (obviously, 2; k¢ = O if the current target y: # y°).
Then, the error function for training this network is given

by
C = Z Z Z Zijktlogzijre. (2)

training sequences t i.J.k

Similar equations hold for the other two networks mod-
eling P(Ft|Ft,1,Ut), and P(Bt|Bt+1,Ut).

4 Bidirectional recurrent neural nets

4.1 The architecture

The basic idea underlying the architecture of BIOHMMs
can be adapted to recurrent neural networks. Suppose
in this case F; and B; are two vectors in IR" and IR™,
respectively. Then consider the following (deterministic)
dynamics, in vector notation:

By = B(Biy1,Uy) (3)
Fy = ¢(Fi—1,Uy) (4)

where 3() and ¢() are nonlinear functions realized by

two MLPs and U; € IR* encodes the input at time # (for
example, using one-hot encoding in the case of amino
acids). Equations 3 are completed by the two boundary
conditions Fy = Bry1 = 0. Also, consider the mapping

Y; = n(Fy, By, Uy) (5)

where 7() is also realized by an MLP (with a softmax
output layer in the case of classification). The neural
network architecture resulting from eqs. 3,5 is shown in
Fig. 2, where for simplicity all the MLPs have a single
hidden layer (several variants are conceivable by varying
the number and the location of the hidden layers). Like
in Elman’s simple recurrent networks, the hidden state
F; is copied back to the input. This is graphically repre-
sented in Fig. 2 using the causal shift operator ¢~ ' that
operates on a generic temporal variable X; and is sym-
bolically defined as X;_; = ¢~ 'X;. The shift operator
with the composition operation forms a multiplicative
group. In particular, ¢, the inverse (or non-causal) shift
operator is defined X;,1 = ¢X; and ¢~ '¢ = 1. As shown
in Fig. 2, a non-causal copy is performed on the hid-
den state B;. Clearly, if we remove the backward chain
{B;} we obtain a standard first-order RNN. A BRNN
is stationary if the connection weights in the networks
realizing (), ¢ and n do not change over time. Station-
arity will be assumed throughout the paper. It is worth

copy

Figure 2: A bidirectional RNN.

noting that using MLPs for implementing 3() and ¢() is
just one of the available options as a result of their well
known universal approximation properties. Similar gen-
eralizations of second-order RNN (Giles et al., 1992) or
recurrent radial basis functions (Frasconi et al., 1996) are
easily conceivable following the approach here described.

4.2 Inference and learning

As for standard RNNs, it is convenient to describe in-
ference and learning in BRNNs by unrolling the network
on the input sequence. The resulting graphical model
has exactly the same form as the BIOHMM network
shown in Fig. 1. Actually, the BRNN can be inter-
preted as a Bayesian network, except for some differ-
ences as explained below. First, causal relationships
among nodes linked by a directed edge should be re-
garded as deterministic rather than probabilistic. In par-
ticular, P(Y:|F}, By, Uz) should be regarded as a delta-
Dirac distribution centered on a value corresponding
to th = n(FtaBtaUt)- Slmllarly, P(Ft|Ft_1,Ut) and
P(B¢|Bi+1,U;) are replaced by Dirac distributions cen-
tered at F; = ¢(Fy_1,U;) and By = 3(Bi41,Ut), respec-
tively. The second difference is that state variables in
this case are vectors of real variables rather than sym-
bols in a finite alphabet.

The inference algorithm in BRNNSs is straightforward
having in mind the network unrolled in time. Starting
from Fy = 0, all the states F; are updated from left to
right. Similarly, states By are updated from right to left.
After forward and backward propagations have taken
place, predictions Y; can be computed. The main ad-
vantage with BRNNs (compared to BIOHMMs) is that
inference is much more efficient. The intuitive reason
is that in the case of BRNNSs, the hidden states F; and
B; evolve independently (without affecting each other).
However, in the case of BIOHMMSs, F; and By, although
conditionally independent given U;, become dependent
when Y; is also given (as it happens during learning).
This is reflected by the fact that cliques relative to By
and F} in the junction tree contain triplets of state vari-
ables, thus yielding a time complexity proportional to

n? for each time step (if both variable have the same
number of states n). In the case of BRNNs, assuming
that the MLPs realizing 3() and ¢() have O(n) hidden
units, time complexity is only proportional to n? for each
time step and this can be further reduced by limiting the
number of hidden units.

The learning algorithm is based on gradient descent
so the only difference with respect to standard RNNs is
to compute the gradient taking into account non-causal
temporal dependencies. Because the unrolled network is
acyclic, a generalized backpropagation algorithm can be
derived as follows. The error signal is first injected into
the leaf nodes (corresponding to the output variables
Y:). Then error is propagated over time (in both di-
rections) by following any reverse topological sort of the
unrolled net. Obviously, this step also involves backprop-
agation through the hidden layers of the MLPs. Since
the model is stationary, weights are shared among the
different replicas of the MLPs at different time steps.
Hence, the total gradients are obtained by summing all
the contributions associated to different time steps.

5 Experimental results

5.1 Data Set

We began this study using a high quality data set ex-
tracted from the Brookhaven Protein Data Bank (PDB)
(Bernstein and et al., 1977) release 77 (July 1996). We
excluded entries if:

e They were not determined by X-ray diffraction,
since no commonly used measure of quality is avail-
able for NMR, or theoretical model structures.

e The program DSSP could not produce an output,
since we wanted to use the DSSP assignment of
protein secondary structure (Kabsch and Sander,
1983).

e The protein that had physical chain breaks (defined
as neighboring amino acids in the sequence having
C*-distances exceeding 4.0A).

e They had a resolution worse than 1.9A, since reso-
lutions better than this enables the crystallographer
to remove most errors from their models.

e Chains with a length of less than 30 amino acids
were also discarded.

From the remaining set of chains a representative sub-
set with low pairwise sequence similarities were selected
by running the algorithm #1 of Hobohm et al. (1992),
using the local alignment procedure search (rigorous
Smith-Waterman algorithm) (Myers and Miller, 1988;
Pearson, 1990) using the pam120 matrix, with gap penal-
ties -12, -4. Since the beginning of this study we have
progressively updated the data set and the reported ex-
periments are based on a set consisting of 824 distinct
protein chains, corresponding to 184973 amino acids,
roughly 10 times more than what was available in (Qian
and Sejnowski, 1988).

Figure 3: Unfolded bidirectional model for protein SS
prediction. The model receives as input an explicit win-
dow of amino acids of size w (w = 3 in the figure).

5.2 Architecture details and results

Although in principle bidirectional models can memorize
all the past and future information using the state vari-
ables F; and By, we also tried to employ a window of
amino acids as input at time ¢. In so doing, the input
U, for the model is a window of w amino acids centered
around the ¢-th residue in the sequence (see Fig. 3). As
explained in the previous sections, both with BIOHMMs
and BRNNs the prediction Y; is produced by an MLP fed
by U; (a window of amino acids) and the state variables
F; and B;. Hence, compared to the basic architecture
of Qian and Sejnowski, our architecture is enriched with
more contextual information provided by the state vari-
ables. The main advantage of the present proposal is
that w can be kept quite small (even reduced to a sin-
gle amino acid), and yet relatively distant information
propagated through the state variables. Because of sta-
tionarity (weight sharing) this approach allows a better
control over the number of free parameters, thus reduc-
ing the risk of data overfitting.

In a set of preliminary experiments, we have tried
different architectures and model sizes. In the case of
BIOHMMs the best result was obtained using w = 11,
n = m = 10, 20 hidden units for the output network
and 6 hidden units for the forward and backward state
transition networks. The correct residue prediction rate
is 68%, measured by reserving 1/3 of the available se-
quences as a test set. This result was obtained with-
out using output filtering or multiple alignments. Un-
fortunately, n = 10 seems too small a number for stor-
ing enough contextual information. On the other hand,
higher values of n are currently prohibitive for today’s
c%mputational resources since complexity scales up with
n°.

In the case of BRNNs we were able to obtain
slightly better performances, with significant compu-
tational savings. A set of initial experiments indi-
cated that redefining the output function as Y; =
n(Fi—k,- -, Fiyr, Bt—g, Bk, U) and using w = 1 yields
the best results. In subsequent experiments we have
trained 4 different BRNNs with n = m varying from

7 to 9, and k varying from 2 to 4. The number of free
parameters varies from about 1400 to 2100. An RNN
can develop quite complex nonlinear dynamics and, as a
result, n BRNN state units are able to store more con-
text than n BIOHMM discrete states. The performances
of the 4 networks are basically identical, achieving about
68.8% accuracy measured on the test set. While these
results do not lead to an immediate improvement, it is
interesting to remark that using a static MLP we ob-
tained roughly the same accuracy only after the inser-
tion of additional architectural design as in (Riis and
Krogh, 1996): adaptive input encoding and output fil-
tering. More precisely, the MLP has w = 13, with 5 units
for adaptive encoding (a total of about 1800 weights) and
achieves 68.9%. Interestingly, although the 4 BRNNs
and the static MLP achieve roughly the same overall
accuracy, distributions of errors on the three classes are
quite different. This suggests that combining predictions
from filtered MLP and BRNNs could improve perfor-
mance. Indeed, by constructing an ensemble with the
five networks, accuracy increased to 69.5%. Finally we
enriched the system using an output filtering network on
the top of the ensemble and adding multiple alignment
profiles as provided by the HSSP database (Sander and
Schneider, 1991). In this preliminary version of the sys-
tem we have not included commonly used features like
entropy and number of insertions and deletions. The
performance of the overall system is 73.3%.

In a second set of experiments we measured accuracy
using 7-fold cross validation. The usage of more train-
ing data in each experiments seems to have a positive
effect. The performance of the five networks ensemble is
69.6% without alignments and 73.7% using alignments.
We must remark that these results are not directly com-
parable with those reported by Rost and Sander 1994
because our dataset contains more proteins and the as-
signment of residues to SS categories is slightly differ-
ent (in our case the class coil includes everything except
DSSP classes "H’ and ’E’).

The last experiment is based on a set of 35 pro-
teins from the 1998 edition of “Critical Assessment
of Protein Structure Prediction” (Moult et al., 1997;
CASP3, 1998). This unique experiment attempts to
gauge the current state of the art in protein structure
prediction by means of blind prediction. Sequences of
a number of target proteins, which are in the process
of being solved, are made available to predictors before
the experimental structures are available. Although we
tried our system only after the competition was closed,
we believe that result obtained on this dataset are still
interesting. Our system achieved 71.78% correct residue
prediction on the 35 sequences. A direct comparison
with other systems is difficult. The best system (labeled
JONES-2 in the CASP3 web site) achieves 75.5% cor-
rect residue prediction on a subset of 23 proteins (per-
formance of JONES-2 on the remaining 12 proteins is
not available). It should be also remarked that, in the
CASP evaluation system, DSSP class ’G’ (3-10 helix) is
assigned to "H’ and DSSP class ‘B’ (beta bridge) is as-

signed to 'E’. Moreover, accuracy is measured by aver-
aging the correct prediction fraction over single proteins,
thus biasing sensitivity towards shorter sequences. Us-
ing this convention, our accuracy is 74.1% on 35 proteins
while JONES-2 achieves 77.6% on 23 proteins. If we fo-
cus only on the 24 proteins for which our network has the
highest prediction confidence (the criterion is based on
the entropy at the softmax output layer of the network),
then the performance of our system is 77.5%, although
it is likely that in so doing we are including sequences
which are easy to predict. More importantly, JONES-2
results have been obtained using profiles from TrEMBL
database (Bairoch and Apweiler, 1999). These profiles
contain many more sequences than our profiles which are
based on the older HSSP database. We believe that this
leaves room for further improvements.

6 Conclusion

In this paper we have proposed two novel architec-
tures for dealing with sequence learning problems in
which data is not obtained from physical measurements
over time. The new architectures remove the causal-
ity assumption that characterize current connectionist
approaches to learning sequential translations. Using
BRNNs on the protein secondary structure prediction
task appears to be very promising. Our performance
is very close to the best existing systems although our
usage of profiles is not as sophisticated. In the next fu-
ture we plan to improve our prediction system by using
profiles from the TrEMBL database.

Acknowledgements

The work of PB is in part supported by an NIH SBIR,
grant to Net-ID, Inc. The work of SB is supported by a
grant from the Danish National Research Foundation.
The work of PF and GS is partially supported by a
“40%” grant from MURST, Italy.

References

A. Bairoch and R. Apweiler. The SWISS-PROT protein se-
quence data bank and its supplement TrEMBL in 1999. Nu-
cleic Acids Res, (27):49-54, 1999.

P. Baldi and S. Brunak. Bioinformatics: The Machine Learn-
ing Approach. MIT Press, Cambridge, MA, 1998.

Pierre Baldi and Yves Chauvin. Hybrid modeling, HMM /NN
architectures, and protein applications. Neural Computation,
8(7):1541-1565, 1996.

P. Baldi, Y. Chauvin, T. Hunkapillar, and M. McClure. Hid-
den Markov models of biological primary sequence informa-
tion. Proc. Natl. Acad. Sci. USA, 91:1059-1063, 1994.

Y. Bengio and P. Frasconi. Input-output HMM’s for sequence
processing. IEEE Trans. on Neural Networks, 7(5):1231-
1249, 1996.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learn-
ing long-term dependencies with gradient descent is difficult.
IEEE Trans. on Neural Networks, 5(2):157-166, 1994.

F. C. Bernstein and et al. The protein data bank: A computer
based archival file for macromolecular structures. J. Mol.
Biol., 112:535-542, 1977.

CASP3. Third community wide experiment on the
critical assessment of techniques for protein struc-
ture prediction. Unpublished results available in
http://predictioncenter.llnl.gov/casp3, December
1998.

Paolo Frasconi, Marco Gori, Marco Maggini, and Giovanni
Soda. Representation of finite state automata in recurrent
radial basis function networks. Machine Learning, 23:5-32,
1996.

Zoubin Ghahramani and Michael I. Jordan. Factorial hidden
Markov models. Machine Learning, 29:245-274, 1997.

C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and
Y. C. Lee. Learning and extracting finite state automata with
second-order recurrent neural networks. Neural Computation,
4(3):393-405, 1992.

L. K. Hansen and P. Salamon. Neural network ensembles.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
12:993-1001, 1990.

U. Hobohm, M. Scharf, R. Schneider, and C. Sander. Selec-
tion of representative data sets. Prot. Sci., 1:409-417, 1992.

F. V. Jensen, S. L. Lauritzen, and K. G. Olosen. Bayesian up-
dating in recursive graphical models by local computations.
Comput. Stat. Quarterly, 4:269-282, 1990.

W. Kabsch and C. Sander. Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and geo-
metrical features. Biopolymers, 22:2577-2637, 1983.

Anders Krogh and Jesper Vedelsby. Neural network ensem-
bles, cross validation, and active learning. In G. Tesauro,
D. Touretzky, and T. Leen, editors, Advances in Neural In-
formation Processing Systems 7, pages 231-238. The MIT
Press, 1995.

John Moult et al. Critical assessment of methods of protein
structure prediction (CASP): Round II. Proteins, 29(51):2-6,
1997. Supplement 1.

E. W. Myers and W. Miller. Optimal alignments in linear
space. Comput. Appl. Biosci., 4:11-7, 1988.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems :
Networks of Plausible Inference. Morgan Kaufmann, 1988.

W. R. Pearson. Rapid and sensitive sequence comparison
with FASTP and FASTA. Meth. Enzymol., (183):63-98,
1990.

N. Qian and T. J. Sejnowski. Predicting the secondary struc-
ture of glubular proteins using neural network models. J.
Mol. Brol., 202:865-884, 1988.

S. K. Riis and A. Krogh. Improving prediction of protein sec-
ondary structure using structured neural networks and multi-
ple sequence alignments. J. Comput. Biol., 3:163-183, 1996.

B. Rost and C. Sander. Improved prediction of protein sec-
ondary structure by use of sequence profiles and neural net-
works. Proc. Natl. Acad. Sci. USA, 90(16):7558-7562, 1993.

B. Rost and C. Sander. Prediction of protein secondary struc-
ture at better than 70 % accuracy. J. Mol. Biol., 232(2):584—
599, 1993.

B. Rost and C. Sander. Combining evolutionary information
and neural networks to predict protein secondary structure.
Proteins, (19):55-72, 1994.

C. Sander and R. Schneider. HSSP: Homology derived sec-
ondary structure of proteins. Proteins, 9:56-68, 1991.

