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Abstract.  Prediction of protein secondary structure (SS) is one of the classi-
cal problems in bioinformatics that are best solved using computational predic-
tion methods based on machine learning. Current state-of-the-art predictors are
based on feedforward artificial neural networks fed by a fixed-width window of
amino acids, centered on the predicted residue. Using a fixed-width small win-
dow offers the advantage of architectural simplicity and allows controlling pa-
rameter overfitting. On the other hand, relevant information is also contained in
distant portions of the proteins and current methods cannot exploit this infor-
mation. In this chapter, we describe two alternative architectures based on non-
causal (bidirectional) dynamics. These architectures can be seen as generaliza-
tions of input-output hidden Markov models or recurrent neural networks. Un-
like their conventional counterparts, their outputs depend on both upstream and
downstream information. This novel algorithmic idea is a first step towards ar-
chitectures capable of making predictions based on variable ranges of depend-
encies.
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Introduction

During the last few years, computational techniques for prediction of the
structure and the function of proteins have received increasingly attention. One
of the classical problems is the prediction of protein secondary structure (SS), a
useful approximation to the full knowledge of the three-dimensional folding
that can help to elucidate the function of a protein. Human genome and other
sequencing projects are enormously increasing the availability of biological se-
quence data, whilst first principle analyses capable of predicting SS with high
accuracy are still lacking. In this situation one can expect that machine learning
techniques be particularly adequate. Indeed, the present state-of-the-art predic-
tors are based on artificial neural networks (ANNs) [3].

The influential early work of Qian and Sejnowski [29] proposes a fully con-
nected feedforward ANN, with a local input window of typical length 13 amino
acids, orthogonal encoding, and a single hidden layer. The output layer consists
of three sigmoidal units with orthogonal encoding of the SS classes for the resi-
due located at the center of the input window. A significant improvement is ob-
tained by cascading the previous architecture with a second network to clean up
the output of the lower network. The cascaded architecture reaches a perform-
ance of Q3 = 64.3%, with the correlations Cα = 0.41 for helices, Cβ = 0.31 for
sheets, and Cγ = 0.41 for coils (see [4] for a review of the standard performance
measures used in this chapter). Unless we specify otherwise, Q3 percentages are
measured on a per residue basis. Prediction of SS based on single sequences and
local windows seem to be limited to < 65−69% accuracy. Increasing the size of
the window, however, does not lead to improvements because of the overfitting
problem associated with large networks. Building upon the work of Qian and
Sejnowski [29], for a long time the best SS prediction performance has been
achieved by the PHD scheme by Rost and Sander [32,33]. Rost and Sander use
a number of machine learning techniques including early stopping, ensemble
averages of different networks, and a weighting scheme to compensate for the
well known composition biases of large low-similarity databases (roughly 30%
helices, 20% sheets, and 50% coils). Most of the improvements, however, seem
to result from the use of input profiles, derived from multiple alignments, that
can leverage evolutionary information in the SS being considerably more con-
served than the primary structure. In the 1996 Asilomar blind prediction com-
petition CASP2 (Critical Assessment of Protein Structure Prediction), this
method outperformed all others, reaching a performance level of 74%. While
input profiles contain information not present in individual sequences, it is
worth noting that they also discard information by losing intra-sequence corre-
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lations. In [31], further NN architectural and machine learning refinements are
used. One of these is the adaptive encoding of the input amino acids by the NN
weight sharing technique to reduce the number of free parameters. Different
networks are designed for each SS class by leveraging biological knowledge,
such as the periodicity of alpha helices, with output filtering and ensemble aver-
aging. Finally, predictions made from individual sequences are combined at the
output level, using both multiple alignments and a maximum entropy weighting
scheme [22]. In spite of a considerable amount of architectural design, the final
performance with multiple alignments is practically identical to the one attained
by PHD. The overall accuracy is Q3 = 71,3%, and correlation coefficients cor-
relations Cα = 0.59, Cβ = 0.50, and Cγ = 0.41. More recently, Cuff and Barton
[12] have compared and combined the main existing predictors. On the particu-
lar data sets used in their study, the best isolated predictor is still PHD with Q3 =
71.9%. At the 1998 CASP3 competition, the best results were obtained by one
of the two programs entered by D. Jones, using a relatively simple NN archi-
tecture [20]. Out of the 35 blind sequences, the program selected 23 and
achieved a performance of Q3= 77.6% per protein, or Q3= 75.5% per residue.
Thus it appears today that to further improve SS prediction one should use dis-
tant information, in sequences and alignments, that is not contained in local in-
put windows. This is particularly clear in the case of beta sheets where stabiliz-
ing bonds can be formed between amino acids far apart. This, however, poses
two related challenges: (1) avoiding the overfitting associated with large-input-
windows; (2) detecting sparse and weak long-ranged signals to modulate the
significant local information, while ignoring the additional noise found over
larger distances.

In this chapter, we approach the prediction problem in a new way, introduc-
ing an algorithm that uses the whole protein sequence rather than a short sub-
string. To begin with, protein SS prediction can be formulated as the problem of
learning a synchronous sequential translation from strings in the amino acid al-
phabet to strings in the SS alphabet. This task is a special form of grammatical
inference. Although several symbolic algorithms exist for learning grammars
[1], to the best of our knowledge they have not led to successful protein SS pre-
dictors presumably because of their scarce robustness in the presence of noisy
data. Connectionist approaches, on the other hand, are based on statistical
learning and therefore tend to exhibit greater robustness. The main
connectionist architectures that have been investigated for grammatical infer-
ence are recurrent neural networks (RNN), with both first [11] and second-order
[17] connections, as well as and input-output hidden Markov models (IOHMM)
[6,7].

Both RNNs and IOHMMs are sensible alternatives to methods based on a
fixed-width input window. The expressive power of these models enables them
to capture distant information in the form of contextual knowledge stored into
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hidden state variables. In this way, they can overcome the main disadvantage of
feedforward networks, namely the linear growth of the number of parameters
with the window size. Intuitively, these models are parsimonious because of the
implicit weight sharing resulting from their stationarity, i.e. parameters do not
vary over time. Thus, it would make sense to tackle the SS prediction problem
using RNNs or IOHMMs. A more careful analysis, however, reveals a basic
limitation of standard RNNs and IOHMMs in computational biology. In fact,
both classes of models are causal in the sense that the output at time t does not
depend on future inputs. Causality is easy to justify in dynamics that attempt to
model the behavior of physical systems, or that need to operate in real time.
Clearly, in these cases the response at time t cannot depend on stimulae that the
system has not yet encountered. But biological sequences are not really tempo-
ral: the conformation and function of a region in a sequence may strongly de-
pend on events located both upstream and downstream. Thus, to tackle the SS
prediction problem, we develop a connectionist architecture that provides a non-
causal generalization of RNNs. Our proposal is motivated by the assumption
that both adaptive dynamics and non-causal processing are needed to overcome
the drawbacks of local fixed-window approaches. Furthermore, we leverage
evolutionary information, both at the input and output levels, using a mixture-
of-estimators approach. While our current system achieves an overall perform-
ance exceeding 75% correct prediction (at least comparable to the best existing
systems) the main emphasis here is on the development of new algorithmic
ideas.

Datasets

The assignment of the SS categories to the experimentally determined 3D
structure is nontrivial and is usually performed by the widely used DSSP pro-
gram [21]. DSSP works by assigning potential backbone hydrogen bonds (based
on the 3D coordinates of the backbone atoms) and subsequently by identifying
repetitive bonding patterns. Two alternatives to this assignment scheme are the
programs STRIDE and DEFINE. In addition to hydrogen bonds, STRIDE uses
also dihedral angles [16]. DEFINE uses difference distance matrices for evalu-
ating the match of interatomic distances in the protein to those from idealized
SS [30]. While assignment methods impact prediction performance to some
extent [12], here we concentrate exclusively on the DSSP assignments. A num-
ber of data sets were used to develop and test our algorithms. We will refer to
each set using the number of sequences contained in it. The first high quality
data used in this study was extracted from the Brookhaven Protein Data Bank
(PDB) [9] release 77 and subsequently updated. We excluded entries if:
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•  They were not determined by X-ray diffraction, since no commonly used
measure of quality is available for NMR or theoretical model structures.

•  The program DSSP could not produce an output, since we wanted to use
the DSSP assignment of protein secondary structure [21].

•  The protein had physical chain breaks (defined as neighboring amino
acids in the sequence having Cα−distances exceeding 4.0Å).

•  They had a resolution worse than 1.9Å, since resolutions better than this
enables the crystallographer to remove most errors from their models.

•  Chains with a length of less than 30 amino acids were also discarded.
•  From the remaining chains, a representative subset with low pairwise

sequence similarities was selected by running the algorithm #1 of Ho-
bohm et al. [18], using the local alignment procedure search (rigorous
Smith-Waterman algorithm) [27,28] using the pam120 matrix, with gap
penalties -12, -4.

Thus we obtained a data set consisting of 464 distinct protein chains, corre-
sponding to 123,752 amino acids, roughly 10 times more than what was avail-
able in [29]. Another set we used is the EMBL non-redundant PDB subsets that
can be accessed by ftp at the site ftp.embl-heidelberg.de. Data details are in
the file /pub/databases/pdb_select/README. The extraction is based on the
file /pub/databases/pdb_select/1998_june.25.gz containing a set of non-
redundant (25%) PDB chains. After removing 74 chains on which the DSSP
program crashes, we obtained another set of 824 sequences, overlapping in part
with the former ones. In addition, we also used the original set of 126 sequences
of Rost and Sander (corresponding to 23,348 amino acid positions) as well as
the complementary set of 396 non-homologue sequences (62,189 amino acids)
prepared by Cuff and Barton [12]. Both sets can be downloaded at
http://circinus.ebi.ac.uk:8081/pred_res/. Finally, we also constructed
two more data sets, containing all proteins in PDB which are at least 30 amino
acids long, produce DSSP output without chain breaks, and have a resolution of
at least 2.5 Å. Furthermore the proteins in both sets have less than 25% identity
to any of the 126 sequences of Rost and Sander. In both sets, internal homology
is reduced again by Hobohm's #1 algorithm, keeping the PDB sequences with
the best resolution. For one set, we use the standard 25% threshold curve for
homology reduction. For the other set, however, we raise, the threshold curve
by 25%. The set with 25% homology threshold contains 826 sequences, corre-
sponding to a total of 193,249 amino acid positions, while the set with 50%
homology threshold contains 1180 sequences (282,303 amino acids). Thus, to
the best of our knowledge, our experiments are based on the currently largest
available corpora of non-redundant data. In all but one experiment (see below),
profiles were obtained from the HSSP database [35] available at
http://www.sander.embl-heidelberg.de/hssp/.



6

Bidirectional architectures

Let us assume a probabilistic framework. A SS prediction algorithm esti-
mate, for each sequence position t, the posterior probabilities of secondary
structure classes (1,2, and 3, corresponding to alpha-helices, beta-sheets, and
coils), given the protein’s sequence of amino acids. Formally, the output at resi-
due t is a vector of conditional probabilities Ot=[o1,t,o2,t,o3,t]. In most neural

networks based approaches, Ot is computed as a function of a substring of

amino acids centered on the t-th residue. In our method, the output is computed
as

Ot=η(Ft,Bt,It) (1)

and depend on the forward (upstream) context Ft, the backward (downstream)

context Bt and the input It. The vector It∈ℜ
k encodes a protein substring cen-

tered on t. In the most simple case, where the input is limited to a single amino
acid, k = 20 by using one-hot encoding. Larger input windows extending over
several amino acids are of course also possible. The function η() is realized by a
neural network Nη (see center and top connections in Figure 2). Thus to guar-
antee a consistent probabilistic interpretation, the three output units of network
Nη are obtained as normalized exponentials (or softmax ):

Oi,t=exp(neti,t)/ Σlexp(netl,t) (2)

where neti,t is the activation of the i-th output unit at position t. The perform-

ance of the model can be assessed using the usual relative entropy between the
estimated and the target distribution.

The novelty of the model is in the contextual information contained in the
vectors Ft ∈ℜ

n and especially in Bt∈ℜ
m. These vectors are defined by the re-

current bidirectional equations:

Ft =ϕ(Ft-1,It)

Bt=β(Bt+1,It).

(3)

Here ϕ() and β() are two adaptive nonlinear state transition functions. They
can be implemented in different forms but here we assume that they are realized
by two NNs, Nϕ and Nβ (left and right subnetworks in Figure 2), with n and m
logistic output units, respectively. Thus, Nϕ and Nβ are fed by n+k and m+k in-
puts, respectively. Here also larger input windows are possible, especially in
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combination with the weight sharing approach described in [31], and different
inputs could be used for the computation of Ft, Bt, and Ot. The forward chain Ft
stores contextual information contained at the left of index t and plays the same
role as the internal state in standard RNNs. The novel part of the model is the
presence of an additional backward chain Bt, in charge of storing contextual in-

formation contained at the right of index t, i.e. in the future. The actual form of
the bidirectional dynamics is controlled by the connection weights in the sub-
networks Nϕ and Nβ. As we shall see, these weights can be adjusted using a
maximum-likelihood approach.  Since eq. 2 involves two recurrences, two cor-
responding boundary conditions must be specified, at the beginning and the end
of the sequence. For simplicity, in our experiments we always used Ft = 0 and

Bt+1 = 0, but it is also possible to adapt the boundaries to the data, extending

the technique suggested in [17] for standard RNNs.
The discrete time index t ranges from 1 to T, the total length of the protein

sequence being examined. Hence the probabilistic output Ot is parameterized by
a RNN and depends on the input It and on the contextual information, from the

entire protein, summarized into the pair (Ft,Bt). In contrast, in a conventional

NN approach this probability distribution depends only on a relatively short
subsequence of amino acids. Intuitively, we can think of Ft and Bt as "wheels"

that can be "rolled" along the protein. To predict the class at position t, we roll
the wheels in opposite directions from the N and C terminus up to position t and
then combine what is read on the wheels with It to calculate the proper output

using function η().

Figure 1. Direct dependencies among the variables involved in a bidirectional BRNN.
The boundary conditions are provided by F0=0, BT+1=0 (dark nodes). To form a pre-

diction, evidence is entered into input nodes, which are associated with the current pro-
tein sequence.

O1 O2 OT

I1 I2 IT

F1 F2 FT

B1 B2 BT BT+1

F0
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The graphical model shown in Figure 1 describes the global mapping from
the input amino acid sequence to the output SS sequence. The network repre-
sents the direct dependencies among the variables It, Ft, Bt and Ot, unrolled

over time for t=1,…,T. Each node is labeled by one of the variables and arcs
represent direct functional dependencies. Interestingly, the same graph would
represent a Bayesian network if the relationships amongst It, Ft, Bt, Ot were

probabilistic, rather than deterministic as in Eqs. 1, 2. In fact, such probabilistic
version of the architecture would yield a bidirectional generalization of
IOHMMs. Unlike RNNs, however, propagation of information in bidirectional
IOHMMs is computationally expensive. The underlying Bayesian network
contains undirected loops that require the use of the junction tree algorithm
[19]. While inference in this network can be shown to be tractable, the corre-
sponding time complexity of O(n3) for each time step (here n is the typical
number of states in the chains) limits their practical applicability to the SS pre-
diction task [5]. An architecture resulting from Eqs. 2 and 1 is shown in Figure
2 where, for simplicity, all the NNs have a single hidden layer. The hidden state
F(t) is copied back to the input. This is graphically represented in Figure 2.

Figure 2. A BRNN architecture.

It

BtFt

q+1q−1

Ot

Ft−1 Bt+1
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Removal of the backward chain would result in a standard causal RNN. The
number of degrees of freedom of the model depends on the following factors:
(1) the dimensions n and m of the forward and backward state vectors; (2) the
number of hidden units in the three feedforward networks realizing the state
transition and the output functions (see Fig. 2). It is important to remark that the
BRNN has been defined as a stationary model, i.e. the connection weights in
the networks realizing Nϕ, Nβ, and Nη do not change with respect to position
along the protein. This is a form of weight sharing that reduces the number of
free parameter and the risk of overfitting, without necessarily sacrificing the ca-
pability to capture distant information. Since the graph shown in Fig. 1 is acy-
clic, nodes can be topologically sorted, defining unambiguously the global
processing scheme. Using the network unrolled through time, the BRNN pre-
diction algorithm updates all the states Ft from left to right, starting from F0=0.

Similarly, states Bt are updated from right to left. After forward and backward
propagations have taken place, the predictions Ot can be computed. The forward

and backward propagations need to be computed from end to end only once per
protein sequence. As a result, the time complexity of the algorithm is O(TW),
where W is the number of weights and T the protein length. This is the same
complexity as feedforward networks fed by a fixed-size window. In the case of
BRNNs, W typically grows as O(n2) and the actual number of weights can be
reduced by limiting the number of hidden units in the subnetworks Nϕ and Nβ.
Thus, inference in BRNNs is more efficient than in bidirectional IOHMMs,
where complexity is O(Tn3) [5]. Learning can be formulated as a maximum
likelihood estimation problem, where the log likelihood is essentially the rela-
tive entropy function between the predicted and the true conditional distribution
of the secondary structure sequence given the input amino acid sequence:

L=Σsequences Σtzi,t log oi,t
(4)

with zi,t=1 if the SS at position t is i, and zi,t=0 otherwise. The optimization

problem can be solved by gradient ascent. The only difference with respect to
standard RNNs is that gradients must be computed by taking into account non-
causal temporal dependencies. Because the unrolled network is acyclic, the gen-
eralized backpropagation algorithm can be derived as a special case of the
backpropagation through structure algorithm [15]. Intuitively, the error signal, is
first injected into the leaf nodes, corresponding to the output variables Ot. The

error is then propagated through time in both directions, by following any re-
verse topological sort of the unrolled network (see Figure 1). Obviously, this
step also involves backpropagation through the hidden layers of the NNs. Since
the model is stationary, weights are shared among the different replicas of the
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NNs at different time steps. Hence, the total gradient is simply obtained by
summing all the contributions associated with different time steps.

To speed-up convergence, we found it convenient to adopt a hybrid between
batch and on-line weight updating strategy. Once gradients relative to a set of
five protein have been computed, weights are immediately updated. This
scheme was enriched also with a heuristic adaptive learning rate algorithm that
progressively reduces the learning rate if the average error reduction within a
fixed number of epochs falls below a given threshold.

Long ranged dependencies

One of the principal difficulties when training standard RNNs is the problem
of vanishing gradients. This problem is related to the shape of the error surface
associated with a RNN when sequences in the training set contain long time
lags between inputs and corresponding supervision signals. A theoretical analy-
sis reveals that a necessary condition for the network to robustly store long-term
information is also a sufficient condition for gradient decay [8]. The conse-
quence is that short-term information dominates long-term information, making
the task of capturing distant information very hard. In the case of BRNNs, error
propagation in both the forward and the backward chains is also subject to ex-
ponential decay. Thus, although the model has in principle the capability of
storing remote information, such information cannot be learnt effectively.

Clearly, this is a theoretical argument and its practical impact needs to be
evaluated on a per case basis. In practice, in the case of proteins, the BRNN can
reliably utilize input information located within about ±15 amino acids (i.e., the
total effective window size is about 31). This was empirically evaluated by
feeding the model with increasingly long protein fragments. We observed that
the average predictions at the central residues did not significantly change if
fragments were extended beyond 41 amino acids. This is an improvement over
standard NNs with input window sizes ranging from 11 to 17 amino acids
[33,31]. Yet, there is presumably relevant information located at longer dis-
tances that our model may have not been able to discover so far.  To limit this
problem, we propose a remedy motivated by recent studies [24] suggesting that
the vanishing gradients problem can be mitigated by the use of an explicit delay
line applied to the output, which provides shorter paths for the effective propa-
gation of error signals. This idea cannot be applied directly to BRNNs since
output feedback, combined with bidirectional propagation, would generate cy-
cles in the unrolled network. A similar mechanism, however, can be imple-
mented using the following modified dynamics:
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Ft=ϕ(Ft-1,Ft-2,…,Ft-s,It)

Bt=β(Bt+1,Bt+2,…,Bt+s,It).
(5)

The explicit dependence on forward or backward states introduces shortcut
connections in the graphical model, forming shorter paths along which gradients
can be propagated. This is akin to introducing higher order Markov chains in the
probabilistic version. However, unlike Markov chains where the number of pa-
rameters would grow exponentially with s, in the present case the number of pa-
rameters grows only linearly with s. To reduce the number of parameters, a
simplified version of the above dynamics limits the dependencies to state vec-
tors located s residues apart from t:

Ft=ϕ(Ft-1,Ft-s,It)

Bt=β(Bt+1,Bt+s,It).
(6)

Another variant of the basic architecture which also allows to increase the
effective window size consists in feeding the output networks with a window in
the forward and backward state chains. In this case, the prediction is computed
as

Ot=η(Ft-k,…,Ft+k,Bt-k,…Bt+k,It) (7)

Multiple Alignments and Mixture of Estimators

Multiple alignments and mixture of estimators are two algorithmic ideas
which have been shown to be very effective in the protein SS prediction task.
Both of them have been incorporated in our BRNN-based system. Multiple pre-
dictors can be obtained by varying the size of the BRNN, as controlled by the
dimensions of the state vectors and the number of hidden units. Moreover, dif-
ferent predictors can be obtained using profiles, or multiple alignments, in input
mode [33], or in output mode [31]. In the first case, instead of a code for the
current amino acid, the input It contains the relative frequencies of amino acids

at position t in the protein family. In the second case, a separate sequence of SS
predictions is obtained for each aligned protein, and then all the predictions are
averaged in each column. Since the two methods give different prediction errors
− the input mode, for instance, yields slightly more accurate beta-sheet predic-
tions − it is reasonable to build ensembles containing both types of predictors.
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The setup developed in [25] has also been used to select the profiles. The
setup contains methods similar to the ones applied earlier by Sander and
Schneider ([34]), where the key parameter is the similarity threshold (in terms
of identical residues in a particular pairwise alignment). In [25], the similarity
threshold (dividing sequences with structural homology from those without) had
the form I<290/√L, where L is the length of the alignment. The threshold was
then used to build a profile for all the relevant PDB entries from the matches
found in the SWISS-PROT database.

Implementation and Results

We carried out several preliminary experiments to tune up and evaluate the
prediction system. DSSP classes were assigned to three secondary structure
classes α,β, and γ as follows: α is formed by DSSP class H, β by E, and γ by
everything else (including DSSP classes F, S, T, B, and I). This assignment is
slightly different from other assignments reported in the literature. For example,
in [31], α contains DSSP classes H, G, and I. In the CASP competition [26,10],
α contains H, and G, while β contains E, and B.

In a first set of experiments, we used the 824 sequences dataset and reserved
2/3 of the available data for training, and 1/3 for testing. We trained several
BRNNs of different sizes and different architectural details. In all experiments,
we set n=m and we tried different values for n and k (see Eq. 7). The number of
free parameters varied from about 1400 to 2600. Qualitatively we observed that
using k>0 can improve accuracy, but increasing n beyond 12 does not help be-
cause of overfitting. Results for this method, without using profiles, are summa-
rized in the first rows of Table 1. By comparison, we also trained several feed-
forward NNs on the same data. The best feedforward NN achieved Q3=67.2%
accuracy using a window of 13 amino acids. By enriching the feedforward ar-
chitecture with adaptive input encoding and output filtering, as in [31], 68.5%
accuracy was achieved (output filtering actually increases the length of the input
window). Hence, the best BRNN outperforms our best feedforward network,
even when additional architectural design is included.

Subsequent experiments included the use of profiles. Table 1 reports the best
results obtained by using multiple alignments, both at the input and output lev-
els. Profiles at the input level consistently yielded better results. The best feed-
forward networks trained in the same conditions achieve Q3= 73.0% and 72.3%,
respectively.
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Table 1. Experimental results using a single BRNN and 1/3 of the data as test set.
hϕ, hβ and hη are the number of hidden units for the transition networks Nϕ, Nβ and the
output network Nη  respectively. We always set hϕ=hβ.

Profiles n k hϕ hη W Accuracy (Q3)
No 7 2 8 11 1611 68.7%
No 9 2 8 11 1899 68.8%
No 7 3 8 11 1919 68.6%
No 8 3 9 11 2181 68.8%
No 20 0 17 11 2601 67.6%
Output 9 2 8 11 1899 72.6%
Output 8 3 9 11 2181 72.7%
Input 9 2 8 11 1899 73.3%
Input 8 3 9 11 2181 73.4%
Input 12 3 9 11 2565 73.6%

In a second set of experiments (also based on the 824 sequences), we com-
bined several BRNNs to form an ensemble, as in [23], using a simple averaging
scheme. Different networks were obtained by varying architectural details such
as n, k, and the number of hidden units. Combining 6 networks using profiles at
the input level we obtained the best accuracy Q3=75.1%, measured in this case
using 7-fold cross validation. We also tried to include in the ensemble a set of 4
BRNNs using profiles at the output level but performance in this way slightly
decreased to 75.0%.

A study for assessing the capabilities of the model in capturing long ranged
information was also performed. Results indicate that the model is sensitive to
information located within about ±15 amino acids. Although this value is not
very high, it should be remarked that typical feedforward nets reported in the
literature do not exploit information beyond τ =8.

To further explore the long-range information problem we conducted an-
other set of experiments using BRNNs with simplified shortcuts (see eq. 6). In
this case, as for the results reported in Table 1, we used a single model (rather
than a mixture) and the test set method (1/3 of the available data) for measuring
accuracy. We tried all values of s from 1 to 10, but in no case we could observe
a significant performance improvement on the test set. Interestingly, our ex-
periments showed that using shortcuts reduces the convergence difficulties as-
sociated with vanishing gradients: accuracy on the training set increased from
75.7% using no shortcuts to 76.9% with s=3.  On the other hand, the gap be-
tween training set and test set performance also increased. Thus overfitting off-
set the convergence improvement, probably because long-range information is
too sparse and noisy.
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Another experiment was conducted by training on all the 824 sequences and
using the official test sequences used at the 1998 CASP3 competition. In this
case, we adopted a slightly different class assignment for training (DSSP classes
H, G, and I were merged together). The CASP3 competition was won by one of
the two programs entered by D. Jones, which selected 23 out of 35 proteins ob-
taining a performance of Q3=77.6% per protein, or Q3=75.5% per residue. We
evaluated  that system on the whole set of 35 proteins by using Jones’ prediction
server at http://137.205.156.147/psiform.html. It achieved Q3=74.3% per
residue and 76.2% per protein. On the same 35 sequences our system achieved
Q3=73.0% per residue and 74.6 per protein. A test set of 35 proteins is relatively
small for drawing general conclusions. Still, we believe that this result confirms
the effectiveness of the proposed model, especially in consideration of the fact
that Jones’ system builds upon more recent profiles from TrEMBL database [2].
These profiles contain many more sequences than our profiles, which are based
on the older HSSP database, leaving room for further improvements of our sys-
tem.

Table 2. First confusion matrix derived with an ensemble of 8 BRNNs with 2/3-1/3
data splitting. First row provides percentages of predicted helices, sheets, and coils
within (DSSP-assigned) helices.

pred α pred β pred γ
α 78.61% 3.13% 18.26%
β 5.00% 61.49% 33.51%
γ 10.64% 9.37% 79.99%

Table 3. Same as above. First row provides percentages of (DSSP-assigned) helices,
sheets, and coils within the predicted helices.

α β γ
pred α 88.77% 3.74% 15.49%
pred β 5.11% 73.17% 21.72%
pred γ 11.71% 15.63% 72.66%

To further compare our system with other predictors, as in [12], we also
trained an ensemble of BRNNs using the 126 sequences in the Rost and Sander
data set. The performance on the 396 test sequences prepared by Cuff and Bar-
ton is Q3 = 72.0%. This is slightly better than the 71.9% score for the single best
predictor (PHD) amongst (DSC, PHD, NNSSP, and PREDATOR) reported in
[12]. This result is also achieved with the CASP class assignment.
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Finally, we also trained an ensemble of 6 BRNNs using the set containing
826 sequences with less than 25% identity to the 126 sequences of Rost and
Sander. When tested on the 126 sequences, the system achieves Q3 = 74.7% per
residue, with correlation coefficients Cα = 0.692, Cβ = 0.571, and Cγ = 0.544.
This is again achieved with the harder CASP assignment. In contrast, the Q3 =
75.1% described above was obtained by 7 fold cross-validation on 824 se-
quences and with the easier class assignment (H→α, E→β, the rest →γ). The
same experiment was performed using the larger training set of 1,180 sequences
having also less than 25% identity with the 126 sequences of Rost and Sander,
but with a less stringent redundancy reduction requirement. In this case, and
with the same hard assignment, the results are Q3 = 75.3% with correlation co-
efficients Cα = 0.704, Cβ = 0.583, and Cγ = 0.550. The corresponding confusion
matrices are given in Tables 2 and 3. Table 4 provides a summary of the main
results with different datasets.

Table 4. Summary of main performance results.

Training
sequences

Test
sequences

Class
assignment

Performance
per residue

824 (2/3) 824 (1/3) Default Q3 =75.1%
824 35 CASP Q3 = 73.0%
126 396 CASP Q3 =72.0%
826 126 CASP Q3 =74.7%
1180 126 CASP Q3 = 75.3%

Conclusions

Given the large number of protein sequences available through genome and
other sequencing projects, even small percentage improvements in SS predic-
tion can be significant. The system presented here achieves an overall perform-
ance of over 75% correct classification, at least comparable to the best existing
predictors, but using a different NN approach based on recurrent networks and
bidirectional dynamics.

Interestingly, we have circumstantial evidence that the two methods behave
in significantly different ways: there exist sequences for which our method
achieves over 80% correct prediction, while Jones method is below 70%, and
vice versa. Such differences require further study, and suggest that both meth-
ods could be combined to further improve the results. In particular, if the ad-
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vantage of the method of Jones resides in the type of alignments used, similar
alignments could be incorporated in the BRNN approach. While there is room
for performance improvement, one should also not forget that 100% correct
prediction, from the primary sequence alone, is probably unachievable if noth-
ing else because a minority of proteins may not fold spontaneously, or because
beta-sheet partner strands may be located on a different chain.

Most importantly, perhaps, we have developed here new algorithmic ideas
that begin to address the problem of long-range dependencies. Unlike feedfor-
ward networks, BRNNs can possibly prove advantageous from this point of
view and our preliminary experiments encourage further investigations. This
work could be extended in additional directions. These include architectural
variations (such as the use of larger input windows in the BRNN architecture),
non-symmetrical chains for the past and the future, and the use of priors on the
parameters and/or the architecture together with a maximum a posteriori learn-
ing approach. It is also worth noting that using multi-layered perceptrons for
implementing β() and ϕ() is just one of the available options. For example, a
generalization of second-order RNN [17] is an easily conceivable alternative
parameterization.

Finally, it is clear that the ideas introduced can be applied to other problems
in bioinformatics, as well as other domains, where non-causal dynamical ap-
proaches are suitable. Obvious candidates for further tests of the general method
include the prediction of DNA exon/intron boundaries and promoter regions, of
RNA secondary structure, and of protein functional domains, such as signal
peptides.
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