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Abstract. Protein structures are translation and rotation invariant. In protein struc-
ture prediction, it is therefore important to be able to assess and predict intermediary
topological representations, such as distance or contact maps, that are translation and
rotation invariant. Here we develop several new machine learning methods for the
prediction and assessment of fine-grained and coarse topological representations of
proteins. In particular, we introduce a general class of graphical model architectures
together with the corresponding neural network implementations. These architectures
can be viewed as Bayesian network generalizations of input-output hidden Markov
models (GIOHMMs), involving an input layer, an output layer, and a hidden layer
supported by one or several directed acyclic graphs. The corresponding generalized
recursive neural network (GRNN) architectures are derived by preserving the graphi-
cal structures of the GIOHMMs, but replacing the conditional probability tables with
learnable deterministic functions.

Two methods are proposed for the prediction of protein topological structures. The
first method uses a GIOHMM organized into six horizontal layers: one input plane,
four hidden planes, and one output plane that directly represents the adjacency matrix
of the contact map (or the distance matrix). Each hidden plane is associated with one
of the four cardinal corners towards which all the edges of the corresponding lattice
are oriented. The corresponding GRNNs are used to construct a fine-grained contact
map predictor. The second method uses a GIOHMM approach to learn a graph scoring
function which, in turn, is used to efficiently search the space of possible configura-
tions. The corresponding GRNNs are used to construct a coarse-grained contact map
predictor. Computer simulations show that the predictors for both tasks achieve state-
of-the-art performance.
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1 Introduction

Predicting the 3D structure of chains of amino acids from their primary sequence is a funda-
mental open problem in computational molecular biology. Any approach to the problem must
deal with the fundamental property that protein structures are invariant under translations and
rotations. To this effect, we have proposed a machine learning approach to protein structure
that decomposes the problem into three steps [10] (Figure 1), one of which computes an inter-
mediate topological representation of the protein, the contact map, which is translation and
rotation invariant. More precisely, the first step starts from the primary sequence, possibly
in conjunction with multiple alignments to leverage evolutionary information, and predicts
a number of structural features such as the classification of the amino acids present in the
sequence into secondary classes (alpha helices, beta strands and coils), or into relative expo-
sure classes (e.g. surface/buried). The second step starts from the primary sequence and the
structural features and attempts to predict the contact map of the protein. The contact map is
a 2D representation of neighborhood relationships consisting of an adjacency matrix at some
distance cutoff (typically in the range of 6 to 12Å), or the Euclidean distance matrix. Fine-
grained contact maps are derived at the amino acid (or even atomic) level. Coarse contact
maps can be derived by looking at secondary structure elements and, for instance, their cen-
ters of gravity. The third step is the prediction of actual 3D coordinates from 2D contact maps.
Other topological representations can be obtained in terms of local relative angle coordinates.

Predictors for the first step are described in [36, 37], while methods for the third steps have
been developed in the NMR literature and elsewhere [42, 43] using distance geometry and
stochastic optimization techniques. The focus here is on the second and most difficult step.
Various algorithms for the prediction of contacts [38, 32, 15, 16, 36], distances [2, 30, 22],
and contact maps [17] have been developed, in particular using neural networks. The best
contact map predictor in the literature and at the last CASP prediction experiment [29] re-
ports an average accuracy of 21% correct prediction [17]. While this result is encouraging
and well above chance level by a factor greater than 6, it is still far from providing sufficient
accuracy for reliable 3D structure prediction. A key issue in this area is the amount of noise
that can be tolerated in a contact map prediction without compromising the 3D-reconstruction
step. While to the best of our knowledge systematic tests in this area have not yet been pub-
lished, preliminary tests appear to indicate that recovery of about 50% of distant contacts
at a 8̊A distance cutoff ought to suffice for proper reconstruction, at least for proteins up
to 150 amino acid long (Rita Casadio and Piero Fariselli, private communication and oral
presentation during CASP4 [29]).

In this chapter, we describe several new machine learning methods for the prediction and
assessment of protein topologies, and in particular of fine-grained and coarse contact maps.
The algorithms are all based on connectionist architectures that can be viewed as noncausal
generalizations of IOHMMS (input-output hidden Markov models) to process data structures
richer than sequences, including spatial structures and undirected graphs.

In the first class of methods, recently described in [9, 35], we introduce a new general class
of graphical model architectures together with their associated implementations in terms of
recurrent neural network architectures. The one-dimensional case was originally introduced
to address bioinformatics sequence analysis problems, in particular the prediction of protein
structural features, such as protein secondary structure [6]. The key contribution here is the
generalization from one to two dimensions, which opens the door to further generalizations
both to higher dimensions and to other, non-necessarily spatial, data structures. Here we use
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Figure 1: Overall pipeline strategy for machine learning protein structures. Example of 1SCJ (Subtilisin-
Propeptide Complex) protein. The first stage predicts structural features including secondary structure, con-
tacts, and relative solvent accessibility. The second stage predicts the topology of the protein, using the primary
sequence and the structural features. The coarse topology is represented as a cartoon providing the relative prox-
imity of secondary structure elements, such as alpha helices and beta-strands. The high-resolution topology is
represented by the contact map between the residues of the protein. The final stage is the prediction of the actual
3D coordinates of all residues and atoms in the structure.

the first step in the pipeline to review the one-dimensional version of the architectures and
the second step to introduce the key generalization. In the second class of methods [20], the
learning task consists of predicting a scoring function associated with a hypothetical contact
maps, with the purpose of guiding a graph search algorithm. In this case, recursive neural
networks have been extended to handle undirected (and possibly cyclic) graphs. This was
achieved by taking advantage of the peculiar property of protein contact maps, where vertices
are uniquely ordered (e.g. from protein’s N- to C-terminus).

Without getting into the intricacies of protein structure prediction, suffices it to say that
the prediction of contact maps is probably the most challenging and essential step in the
overall strategy. Because of the example we choose, our discussion will be entirely in terms of
processing architectures with inputs and outputs. It should be obvious to the reader, however,
that the same concepts can be used to produced similar architectures based on inputs only,
outputs only (e.g. HMMs), or even no inputs and no outputs (e.g. Markov chains).
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2 The One-Dimensional Case: Bidirectional IOHMMs

Temporal data can be modeled and processed using Markov models, such as Markov chains,
HMMs, factorial HMMs, IOHMMs, Kalman filters, and so forth [5]. These models, which
can be represented as graphical models (Bayesian networks) [34, 28, 23] with a characteristic
left-right architecture, have been successfully used in many domains from speech to bioinfor-
matics, for instance to model protein sequences and protein families. Biological sequences,
however, are not temporal objects but rather spatial objects. This observation is crucial in
bioinformatics applications, and has led to the introduction in the left-right Markov models
of chains that run in the opposite direction from right to left, or from the future towards the
past, in the form of bidirectional IOHMMs (Figure 2) [7]. Unlike plain IOHMMs [8, 12],
bidirectional IOHMMs contain a directed path connecting any input to any output.

In its most simple form, a bidirectional IOHMMs is a Bayesian network consisting of a
set of inputsIi, outputsOi, and discrete hidden statesHF

i (forward) andHB
i (backward) with

i = 1, . . . , N whereN is the length of the sequence being processed. Each hidden variable has
n states, an integer that controls model complexity. The parameters of the model correspond
to three conditional probability distributions: an output distribution, a forward transition dis-
tribution (both also present in an IOHMM), and a transition distribution associated with the
backward chain:  P (Oi|Ii, H

F
i , HB

i )
P (HF

i |Ii, H
F
i−1)

P (HB
i |Ii, H

B
i+1)

(1)

All these conditional distributions are stationary, i.e. do not depend on the sequence indexi
(a form of parameters sharing).

H

H

O

i

i

i

I i

B

F

Figure 2: Bayesian network graphical model underlying BRNNs consisting of input units, output units, and both
forward and backward Markov chains of hidden states.

Although inference in bidirectional IOHMMs takes time polynomial inn (state size)
andN (sequence length), a deterministic version of the model, based on neural networks,
is often preferred in real world applications because it is much less computationally de-
manding [6]. Details of these architecture will be given in Section 4. The neural network
version of bidirectional IOHMMs have been extensively used in bioinformatics, and in par-
ticular for the first stage of the protein structure prediction pipeline described in the introduc-
tion giving rise to some of the best predictors for secondary structure, solvent accessibility,



New Machine Learning Methods for the Prediction of Protein Topologies 5

and coordination number. The corresponding predictor servers [36, 37, 5] are accessible at
http://promoter.ics.uci.edu/BRNN-PRED/.

3 The General Case: Topological and Generalized IOHMMs

3.1 From 1D to 2D

To predict contact maps, however, the fundamental question is how can the idea of bidirec-
tional IOHMMs be generalized from one dimensional to two dimensional objects? It turns
out that there is a “canonical” 2D generalization described in Figures 3 and 4. In its basic ver-
sion, the generalization consists of a Bayesian network organized into six horizontal layers or
planes: one input plane, 4 hidden planes, and one output plane. Each plane containsN2 nodes
arranged on the vertices of a square lattice. Thus in each vertical column there is an input unit
Ii,j, four hidden unitsHNE

i,j , HNW
i,j , HSW

i,j , andHSE
i,j associated with the four cardinal corners,

and an output unitOi,j with i = 1, . . . , N and j = 1, . . . , N . In each hidden planes, the
edges are oriented towards the corresponding cardinal corner. In the NE plane, for instance,
all edges are oriented towards the North or the East. The parameters of this two-dimensional
GIOHMMs are the conditional probability distributions:

P (Oi|Ii,j, H
NE
i,j , HNW

i,j , HSW
i,j , HSE

i,j, )
P (HNE

i,j |Ii,j, H
NE
i−1,j, H

NE
i,j−1)

P (HNW
i,j |Ii,j, H

NW
i+1,j, H

NW
i,j−1)

P (HSW
i,j |Ii,j, H

SW
i+1,j, H

SW
i,j+1)

P (HSE
i,j |Ii,j, H

SE
i−1,j, H

SE
i,j+1)

again with the obvious adjustments at the boundaries. It is easy to check, and proven below,
that this directed graph has no cycles hence it properly defines the support of a Bayesian
network. Another variation on this approach is given in the Appendix.

Output Plane

Input Plane

4 Hidden Planes

NE

NW

SW

SE

Figure 3: General layout of Bayesian network for processing two-dimensional objects such as contact maps,
with nodes regularly arranged in one input plane, one output plane, and four hidden planes. In each plane, nodes
are arranged on a square lattice. The hidden planes contain directed edges associated with the square lattices.
All the edges of the square lattice in each hidden plane are oriented in the direction of one of the four possible
cardinal corners: NE, NW, SW, SE. Additional directed edges run vertically in column from the input plane to
each hidden plane, and from each hidden plane to the output plane.
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SE i,j-1

NW i,j

I i,j

SE i,j

SW i,j

NE i,j

NW i+1,j

SE i-1,j

NE i,j-1

NE i+1,j

NW i,j+1

SW i-1,j

SW i,j+1

O i,j

Figure 4: Details of connections within one column of Figure 3. The input unit is connected to the four hidden
units, one in each hidden plane. The input unit and the hidden units are connected to the output unit.Ii,j is the
vector of inputs at position(i, j). Oi,j is the corresponding output. Connections of each hidden unit to its lattice
neighbors within the same plane are also shown.

3.2 D-Dimensional Case

It should by now be clear how to build canonical GIOHMMs for any dimensiond. For in-
stance in 3D, one has one input cube of unitsIi,j,k, with eight cubes of hidden unitsH l

i,j,k

(with l = 1, . . . , 8, and one output cubeOi,j,k, with i, j andk ranging from 1 toN . In each
hidden cubic lattice, edges are oriented towards one of the 8 corners. More generally, in
d dimensions one would have2d hidden hypercubic lattices. In each hypercubic lattice, all
connections would be directed towards one of the corners of the corresponding hypercube.
While the 3D version of these architectures could be useful for 3D protein structure predic-
tion problems, in its most simple form the 3D architecture does not address the problems of
translation and rotation invariance. This is the main reason, for our current decomposition of
the problems into three stages. Additional details can be found in [9].

3.3 Other GIOHMMs

In short, the most general definition of a GIOHMM is a graphical model that can be used to
describe a probabilistic input-output mapping between data structures [18, 9] and consisting
of a set ofN input nodes,M output nodes, and a DAG hidden layer (possibly with multiple
connected components), with additional connections running from the input to the output
nodes, and from the input nodes to the hidden nodes.

Generalized HMMs can be defined in a similar way, just by removing the input nodes.
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GHMMs can be employed for density estimation in structured spaces of trees or graphs. In
[14], models specialized for trees have been applied to the classification of documents.

4 Contact Map Prediction As a Graph Search Problem

The second set of methods we have developed is based on two basic ideas: (a) using GIOHMM
architectures to learn a graph scoring function; (b) using the graph scoring function to effi-
ciently search the space of possible contact maps. While the methods is very general and can
be applied to different classes of graphs, here we focus the analysis and simulations on the
coarse contact map of proteins, i.e. the contact map derived at the level of secondary structure
elements.

Let G? = (V, E?) denote the target contact map (an undirected graph). For every candi-
date mapG = (V, E), let s(E|V ) be a scoring function taking values in[0, 1] and having the
following properties:

1. s(E|V ) = 1 iff E = E?;

2. s(E|V ) = 0 iff (V, E) is the null graph

3. if E ⊂ E? ands({e?} ∪ E) = maxe∈V 2\E {s({e} ∪ E)}, thene? ∈ E?.

If s(E|V ) was known, one could easily conceive a heuristic search procedure for finding the
correct contact map. The search algorithm takes the vertex set as input and starts by assigning
the null graph toG. The main loop essentially consists of three basic operations: generation
(all G’s successor are generated by applying allowable graph edit operators), evaluation (G’
s successors are scored using the functions(E|V )), and update (G replaced by a new graph
closer to the solution). The algorithm terminates whens(E|V ) = 1 andG = G?. Note that
because of property 3, only one type of edit operator is required, namely the operator that adds
one edge(u, v)to E, if (u, v) is not already inE. A hill-climbing version of the algorithm is
given in pseudo code (see Figure 5).

The above algorithm maintains the following loop invariant: before the main loop (lines
2–12),E is a subset ofE?. The invariant follows from our assumptions on the scoring func-
tion and can be easily proved by induction. At the end of the loop,s(E|V ) = 1 and therefore,
by property 2 of the scoring function,E = E?. To analyze the algorithm we observe that each
iteration requires the evaluation ofs(E|V ) for each candidate edge, i.e.O(N2) times, being
N = |V |. Since the loop 2-12 in SEARCH-CMAP is executed(|E?| times,s(E|V ) is eval-
uatedO(|E?|N2) times. But each evaluation takes time linear inN , and thus if we assume
that |E?| = O(|V |) it follows that SEARCH-CMAP is a polynomial algorithm and takes time
O(N4). The apparent simplicity of the overall procedure for findingG? is clearly due to the
existence of an oracle that can computes(E|V ) for every candidate map. In the following we
first suggest a suitable scoring function and then we propose a neural network model capable
of learnings(E|V ) from examples of successful searches.

4.1 Scoring Function

For each mapG = (V, E), let us introduce precision and recall ofE (relative toE?) as
follows:

P (E) =
|E ∩ E?|
|E|

(2)
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SEARCH-CMAP(V )
1 E ← ∅
2 repeat
3 m← 0
4 for eachv in V
5 do for eachu in V − {v}
6 do if ¬(u, v) ∈ E
7 then a← SCORE(E ∪ {(u, v)}|V )
8 if a > m
9 then m← a

10 e← (u, v)
11 E ← E ∪ {e}
12 until m = 1
13 return E

Figure 5: Algorithm for finding the correct contact map given a perfect scoring function.

R(E) =
|E ∩ E?|
|E?|

(3)

Precision (eq. 2) is the fraction of edges in the predicted setE that are correctly assigned
(they are also present inE?). Recall (eq. 3) is the fractionE?’s edges that have been correctly
discovered, i.e. they are also present inE. It can be easily verified that the function

s?(G) =
2P (E)R(E)

P (E) + R(E)
(4)

satisfies properties 1-3 and therefore it is a suitable metric for guiding the heuristic search.
We note that this function is also known as theF1 metric in information retrieval.

4.2 Learning the Scoring Function

The scoring function in Eq. 4 depends onE?, which is unknown. We now introduce a machine
learning method for approximatings?(G). In this approach, we suggest using a GIOHMM
where input nodes are the elements inV (possibly enriched with several attributes), while
the hidden layer topology reflects the candidate mapE. In the case of fine-grained maps,
elements inV would be amino acid symbols. In the case of coarse maps, elements inV are
secondary structure elements and they can be described by a set of numerical and categorical
attributes, such as length and position within the sequence, secondary structure category, and
physic-chemical properties (e.g. related to the average exposure to solvent).

One fundamental issue is the generation of the training set. For each sequence of lengthN
there are2N(N−1)/2 possible distinct contact maps (including the null and the complete graph).
Clearly, using all these graphs as training examples is not realistic and a subsampling strategy
is required. The training set generation can be eitherstatic(i.e., examples are selected before
training begins) ordynamic(i.e. examples are inserted and deleted as training proceeds).

In the static case, we note that random selection of graphs for each protein would be ex-
tremely unlikely to yield a balanced dataset (the probability of guessing a random graph with
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high score decreases exponentially withN ). A simple strategy that guarantees a reasonable
balance between high and low score graphs is to run algorithm SEARCH-CMAP guided by
s?(G) (Eq. 4) and collect as training examples all theO(|V |3) graphs that are generated during
the search. One disadvantage of the static strategy is that after training, the learner is special-
ized in a relatively narrow region of the search space and repeated errors may drive the search
algorithm far away from the goal. In order to mitigate this problem, the hill-climbing proce-
dure in algorithm SEARCH-CMAP can be changed into a beam search. Unlike hill-climbing,
that keeps at each stage the best candidate only, beam search maintains a bounded open list
of sizeB. The open list is filled at each stage with the bestB candidates, selected from all
the possible successors of graphs in the open list at the previous stage.

As an alternative to a static selection of examples, we propose an online strategy where
examples are generated on the fly as while network is being trained. Methods that imple-
ment state space exploration have been suggested in the reinforcement learning literature
[41, 40] as practical ways for dynamically sampling training instances. These methods would
be too costly for implementing a dynamic training scheme in the present contest. We pro-
pose the following simplification. During the learning phase, for a given sequenceV the
learner is asked to follow a particular trajectory from the null graph to a final graph according
to a given policy. A policy is a mapping from states to actions where a state is the undi-
rected graph of a candidate contact map and an action is an edit operator that adds one edge.
Various exploration strategies can be implemented in order to investigate the effects of the
exploration-exploitation trade-off, which is well-known in reinforcement learning [41, 40].
In random exploration, we choose the successor graph randomly with uniform probability.
In pure exploitation, we select the successor graph that has maximum score, as predicted by
the current network. Insemi-uniformexploration (also known asε-greedy policy), with prob-
ability ε we make a random uniform choice from the set of successors, and with probability
1 − ε we choose the maximum score graph. As we will see later, different strategies may
significantly vary the tradeoff between precision and recall (Eqs. 2 and 3).

4.3 A Bi-Recursive Topology

The framework for data structures presented in [18] cannot be applied directly since it re-
quires the input graph be directed, ordered, and acyclic, while contact maps are undirected,
unordered and possibly cyclic graphs. The extension we propose here is based on forward-
backward state space factorization (like in the bidirectional topologies described in earlier
sections) in order to avoid message propagation along directed cycles. Factorization is pos-
sible thanks to the serial order relation≺ defined onG’s vertices, allowing us to interpret
G as a pair of directed acyclic graphs: the forward (from N- to C-terminus) graphGf , hav-
ing Ef = {(u, v) ∈ E : u ≺ v}, and its transpose backward graphGb. Figure 6 shows an
example of the architecture. Each nodev in the input graph is labeled with a fixed-length
tuple I(v). Forward and backward hidden states,Hf (v) andHb(v), respectively, are linked
according to the topologies ofGf andGb.

The architecture shown in Figure 6b has a single outputO, connected to the two extreme
hidden variables (at the N terminus for thef hidden layer and at the C terminus for theb
hidden layer). This network is supposed to be trained in regression mode, so that the output
O approximatess?(G) as closely as possible. This solution, however, is not necessarily effec-
tive because input nodes are connected to the output through long paths, that may introduce
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O(v)

(b)(a) (c)

I(v)

H (v)

H (v)
b

f

I(v) I(v)

H (v)

H (v)
b

f

O

Figure 6: (a): a sample graphG; (b): graphical model for the bi-recursive network, consisting of input nodes,
output node, and two sets of hidden states, linked according to forward and backward graphsGf andGb; (c):
bi-recursive network with one output for each nodev.

problems associated with long term dependencies [11]. Therefore, we suggest to introduce
an output node for each positionv and to decompose the scoring function into a set of local
scoring functions (see Figure 6c). More precisely, letEv = {(u, w) ∈ E : w = v} and
E?

v = {(u, w) ∈ E? : w = v} denote the subsets of edges incident on vertexv respectively
in G andG?. Local precision, recall andF1 measure ofEv (relative toE?

v ) are defined as
follows:

P (Ev) =
|Ev ∩ E?

v |
|Ev|

(5)

R(Ev) =
|Ev ∩ E?

v |
|E?

v |
(6)

s?(Ev)
.
=

2P (Ev)R(Ev)

P (Ev) + R(Ev)
(7)

The following formula computes the score ofG as a weighted sum of the local scores com-
puted at node level:

s̃(E|V ) =
1

|V |

|V |∑
i=1

s?(Evi
) (8)

We found thats̃(E|V ) is a good locally based representation ofs?(G) (their Pearson
correlation coefficient is very close to 1). The inference process of our model computes the
sequence of output values{O(v1), . . . , O(vn)} and predictsG’s score as:

s̃net(E|V ) =
1

|V |

|V |∑
i=1

O(vi) (9)
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In this approach, each output unit is trained in regression mode to approximates?(Evi
), for

i = 1, . . . , n.

5 Neural Network Architectures

5.1 Replacing Recursive Bayesian Networks with Recursive Neural Networks

As described, GIOHMMs are Bayesian networks and, at least in principle, the general prop-
agation and learning algorithms for Bayesian networks can be applied to them [28, 24]. In
practice, however, this approach is not convenient or feasible because of excessive computa-
tional demands or computational intractability of the inference step. Learning algorithms for
Bayesian networks in the presence of hidden variables require iterative approaches such as
EM or gradient descent. In these algorithms, inference is called as a subroutine and thus its
computational cost is particularly critical.

For example, let us consider bidirectional IOHMMs. Inference in this case is computa-
tionally tractable and the algorithms can be easily derived as special forms of belief propa-
gation. However, the junction tree associated with the network in Figure 2 has cliques with
triplets of state variables (this can be easily seen by moralization and triangulation of the
network). As a consequence, the complexity of inference scales up asO(Nn3), beingn the
number of (forward and backward) discrete states, andN the sequence length. In order to
store enough information about the upstream and downstream regions with respect to any po-
sition i, a large number of states must be used, leading to an excessive computational burden
for training.

The case of multiD-dimensional GIOHMMs described in Section 3 is unfortunately much
worse, since belief propagation is intractable forD ≥ 2 (for example, it can be easily seen
that triangulation applied to a regular 2D grid yields cliques of exponential size). Approxi-
mate inference algorithms (such as those based on variational methods [26]) might help in
this case. The totally different approach we adopt in the following is to devise efficient neu-
ral network versions, in which the graphical formalism is retained but with very different
semantics. While missing arcs in Bayesian networks encode probabilistic conditional inde-
pendence, existing arcs in the corresponding neural network encode deterministic functional
dependencies. The general method for downcasting a Bayesian networkB to a corresponding
neural networkN is therefore based on the following steps:

• N andB are described by the same graph. However, discrete variables inB are replaced
by real vectors inN.

• For each non-input node (variable)X in B, the conditional probability tableP (X|Pa[X])
becomes a deterministic but adaptive functionX = N (Pa[X]), implemented by a feed-
forward neural network (e.g. a multilayered perceptron).

• Stationarity is maintained: whenever two conditional probability tables are identical inB,
the corresponding neural networks inN have shared weights.

In so doing, computational complexity is dramatically reduced because inference inN
consists of forward propagation of input signals towards the outputs, following any topolog-
ical sort of the DAG. Learning can then be achieved using gradient descent, amounting to
back-propagation through unfolded space or structure [18, 19].
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5.2 Bidirectional RNNs

To be more precise, consider for example the case of one-dimensional bidirectional IOHMMs
and the problem of protein secondary structure prediction [37]. Lettingi denote position
within a sequence, the overall model outputs for eachi a probability vectorOi representing
the membership probability of the residue at positioni in each one of the three classes (al-
pha/beta/coil). This output is implemented by three normalized exponential output units. The
output prediction has the functional form:

Oi = NO(Ii, H
F
i , HB

i ) (10)

whereHF
i denotes the vector of activities associated with the hidden nodeHF

i , and similarly
for HB

i . The output depends on the local inputIi at positioni, the forward (upstream) hid-
den contextHF

i , and the backward (downstream) hidden contextHB
i . The vectorIi ∈ IRk

encodes the external input at positioni. In the most simple case, where the input is limited
to a single amino acid,k = 20 by using orthogonal encoding. Larger input windows extend-
ing over several amino acids are also possible. The learnable output function is realized by
a neural networkNO (see center and top connections in Figure 7). In a regression task, the
performance of the model can be assessed using the usual mean square error. In a multino-
mial classification task, such as secondary structure prediction, the performance of the model
is better assessed using the relative entropy between the estimated and the target distribution.
The contextual information contained in the vectorsHF

i ∈ IRn andHB
i ∈ IRm (with usually

m = n). These satisfy the recurrent bidirectional equations:

HF
i = NF (Ii, Fi−1)

HB
i = NB(Ii, Bi+1)

(11)

HereNF (·) andNB(·) are learnable non-linear state transition functions, implemented by
two NNs,NF andNB (left and right subnetworks in Figure 7). The boundary conditions for
HF

i andHB
i are set to 0, i.e.HF

0 = HB
N+1 = 0 whereN is the length of the sequence being

examined. Intuitively, we can think ofHF
i andHB

i as “wheels” that can be rolled along the
protein. To predict the class at positioni, we roll the wheels in opposite directions from the
N and C terminus up to positioni and then combine what is read on the wheels withIi to
calculate the proper output usingNO. All the weights of the BRNN architecture, including
the weights in the recurrent wheels, can be trained in a supervised fashion from examples
by a generalized form of gradient descent or backpropagation through time, by unfolding the
wheels in time, or rather space. Architectural variations can be obtained by changing the size
of the input windows, the size of the window of hidden states considered to determine the
output, the number of hidden layers, the number of hidden units in each layer and so forth.
In these general architectures for sequence translation, translation or prediction at a given
position depends on a combination of local information, provided by a standard feedfor-
ward neural network, and more distant context information. Learning is by backpropagation
through space/time.

5.3 2D lattice RNNs

It should be clear how to immediately apply the same ideas to the case of 2D lattice GIOHMMs
and other GIOHMMs. Here the output and the hidden layer propagations are parameterized
by 5 neural networks in the form
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Figure 7: A BRNN architecture with a left (forward) and right (backward) context associated with two recurrent
networks (wheels). Connections from input to wheels are not shown.
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(12)

In the NE plane, for instance, the boundary conditions are set toHNE
ij = 0 for i = 0 or

j = 0. The activity vector associated with the hidden unitHNE
ij depends on the local inputIij,

and the activity vectors of the unitsHNE
i−1,j andHNE

i,j−1. Activity in NE plane can be propagated
row by row, West to East, and from the first row to the last (from South to North), or column
by column South to North, and from the first column to the last. These updates schemes are
easy to code, however they are not the most continuous since they requires a jump at the
end of each row or column (a toroidal architecture may be considered but it would contain
directed cycles). A more continuous update scheme is a zig-zag scheme that would run up
and down successive diagonal lines oriented SE to NW. Depending on software and hardware
implementation or embodiment details, such a scheme could be slightly faster or smoother
during online learning.

It is worth noting that if in the homogeneous GIOHMMs described so far activity propa-
gates simultaneously in the hidden DAGs from the source nodes to the sink nodes, then the
nodes in the center are the first ones for which propagation in all the hidden DAGs converges.
In other words, correct output value stabilize from the center towards the periphery.

5.4 Bi-Recursive Topology

When using a neural network implementation of the dependencies implied by the graphical
model shown in Figure 6, the following equations describe the inference dynamics:

Hf (v) = Nf (I(v), Hf (Pa[v])) (13)

Hv(v) = Nb(I(v), Hb(Pa’[v])) (14)
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where Pa[v] denotes the parents ofv in Gf and Pa’[v] denotes the parents ofv in Gb = G′
f .

Note that, as in the models presented in [18], an upper boundB on the indegree of each
hidden node must be assumed. This also means that the data structures that can be processed
by these network must have bounded connectivity. If a node has less thanB parents (in either
subgraph) the corresponding entries in Pa[v] (or Pa’[v]) are set to zero. Also, a total order
on the parent sets Pa[v] and Pa’[v] is necessary to properly construct the argument list of
functionsNf andNb. In the present case, this total order is inherited from the serial order on
V . Propagation algorithms are straightforward once we recognize that the overall architecture
has no cycles.

5.5 Generalization

More generally, consider a connected DAG in the hidden layer where each node has at mostK
inputs. The nodes that have strictly less thanK inputs are called boundary nodes. In particular
each DAG has at least one source node, with only outgoing edges, and any source node is a
boundary node. For each boundary nodei with l < K inputs, we addK − l distinct input
nodes, called boundary condition nodes. For source nodes,K boundary condition nodes must
be added. After this pre-processing step, the hidden DAG is regular in the sense that all the
nodes have exactlyK inputs, with the exception of the boundary condition nodes that have
become source nodes.

We can now parameterize the corresponding Bayesian network using a neural network
that is shared among all nodes. The network has a single output vector corresponding to the
activity of a node, andK input vectors. The dimension of each vector can vary. The vectors
associated with the boundary nodes are set to the 0 vector, matching the dimensions properly.

Propagation of activity proceeds from the boundary nodes towards the sink nodes. There
may be multiple sink and sources, as evidenced by propagation in the hidden trees in the case
of tree structures. The fact that the graph is a DAG together with the boundary conditions
ensures that there is a consistent order of update of all the nodes. This topological order may
not be unique as in the case of 2D lattice, or tree structures.

5.6 Learning

Gradient descent for recurrent networks [4] can be extended for learning in recursive neu-
ral networks. In particular, the unfolding procedure and the associated gradient computation
described in [19] easily extends to GRNNs, enabling the use of propagation algorithms for
gradient computation. In practice however, it is not always trivial to get gradient descent
learning procedures to work well in recurrent networks: error gradients can vanish rapidly
as a function of time [11] and learning procedures can become stuck in poor local min-
ima [13]. Another important factor in the architectures we are considering is the competi-
tion/collaboration tradeoff between the hidden DAGs and their NN equivalents. Especially in
homogeneous GRNNs where all the hidden components are equivalent, when the system is
initialized with small weights there is an inherent symmetry that needs to be broken. Algo-
rithmic details to address these issues can be found in [9].
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6 Simulations

6.1 Data

Fine-grained mapsThe training and testing data sets used here were extracted from the
PDB select list [25] of February 2001, containing 1520 proteins. The list of structures and
additional information can be obtained from the following ftp site:
ftp://ftp.embl-heidelberg.de/pub/databases. To avoid biases, the set is redundancy-reduced,
with an identity threshold based on the distance derived in [1], which corresponds to a se-
quence identity of roughly 22% for long alignments, and higher for shorter ones. This set
is further reduced by excluding those chains whose backbone is interrupted. To extract 3D
coordinates, together with secondary structure, solvent accessibility and information on beta-
sheet partners, we run Kabsch and Sander’s DSSP program [27] (CMBI version) on all the
PDB files in the PDBselect list, and excluded the ones on which DSSP crashed due, for in-
stance, to missing entries, erroneous entries, or format errors. The final set consists of 1484
proteins. For training and testing purposes, a subset containing only proteins of length up to
100 was also constructed. This set contains 533 proteins and over 2.3 million pairs of amino
acids.

It is essential to notice that contact maps depend strongly on the selection of a distance
cutoff. Furthermore, the composition of the data is in general strongly biased in favor of non-
contacts. Typically, a contact map of sizeN2, contains a number of contacts that is linear in
N . To test the effect of various distance thresholds on contacts, thresholds of 6, 8, 10 and
12 Åwere selected for contact classification, yielding four different classification tasks. The
number of pairs of amino acid in each class and for each contact cutoff is given in Table 1.

Table 1: Data set composition, with number of pairs of amino acids that are separated by less (close) or more
(far) than the distance thresholds inÅngstroms.)

6Å 8Å 10Å 12Å
far 2125656 2010198 1825934 1602412

close 202427 317885 502149 725671
total 2328083 2328083 2328083 2328083

Coarse-grained mapsContacts in coarse maps are associated with the intuitive spatial “neigh-
borhood” concept between two elements of secondary structure. However, the “neighbor-
hood” relation is not uniquely defined. In our preliminary studies we considered two alter-
native definitions. According to the first definition, two secondary structure elements are in
contact if the distance between their centers of gravity falls below a given cutoff. In the sec-
ond definition, two elements are in contact if there are any two Cα atoms not belonging to
the same element whose distance is below a given cutoff. In addition, we also tested another
possible definition considering an average distance between the projections of the principal
axes of secondary structure segments convex hulls. After preliminary attempts we did not
find major differences. We also noted that a segment contact threshold fixed at 8Åis related
to more than 20% of amino acids not in the same segment being in contact. In all the experi-
ments reported below we adopted for the definition of contact as if the distance between any
two Cα atoms not in the same segment is less than 8Å.

In the case of coarse maps, we used a significant fraction of the current representative set
of non homologous protein data bank chains (PDB Select, [25]). We extracted the chains in
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the file 2001Sep.25 (accessible atftp://ftp.embl-heidelberg.de/pub/databases/ )
listing 1544 proteins (1641 chains) with percentage of homology identity less than 25%.
From this set we retained only high quality proteins on which the DSSP program [27] (CMBI
version) does not crash, determined only by X-ray diffraction (not multiple NMR models),
without any physical chain breaks and resolution threshold less than 2.5Å. From the filtered
set we retained the proteins with sequence length less than 300 amino acids, resulting in a
database of 587 proteins. The DSSP program was also used to assign secondary structure
categories. The automatic assignments were projected to the three secondary structure states
alpha, beta and gamma, with the following criteria: H maps to alpha, E maps to beta and the
rest to gamma. Resulting segments with only one amino acid were discarded. As previously
noted, working at the segment level results in significant dimensionality reduction. For ex-
ample in a subset of 2000 PDB sequences with low similarity, the average segment length is
7.12 residues, thus the size of the coarse map is, on average, roughly 2% of the size of the
residue resolution map.

6.2 Inputs

In the contact map prediction, one obvious input at each(i, j) location is the pair of corre-
sponding amino acids. Amino acids can be represented using orthogonal encoding, i.e. vec-
tors of length 20 with a single component set to one and all the others to zero. In this case the
input has 20 components. However, other structural inputs can be added. It is reasonable to
expect that relative solvent accessibility, a percentage indicator of whether a residue is on the
surface or buried in the hydrophobic core of a globular protein could be relevant. Likewise
secondary structure categories can also be included. The value of these indicators is close
to exact when obtained on PDB training data, but would be noisier when estimated from a
secondary structure or accessibility predictor.

A second type of input consideration is the use of profile and correlated mutation ideas
[21, 33, 31, 17]. Profiles, essentially in the form of alignment of homologous proteins, implic-
itly contain evolutionary and structural information about related proteins. This information
is relatively easy to collect using well-known alignment algorithms that ignore 3D structure
and can be applied to very large data sets of proteins, including many proteins of unknown
structure. The use of profiles improves the prediction of secondary structures by several per-
centage points, probably because secondary structure is more conserved than the amino acid
sequence. As in the case of secondary structure, the input could be modified to include the
profile vector at positioni and a profile vector at positionj, yielding two 20-dimensional
probability vectors-an input with 40 numerical components.

When a distant pairi, j) of positions in multiple alignment is considered, however, hor-
izontal correlations in the sequences may exist that result entirely from 3D structural con-
straints. Such horizontal correlations are entirely lost if each profile is entered independently.
Thus an expanded input, which retains this information, consists of a20× 20, and generally
sparse matrix corresponding to the probability distribution over all pairs of amino acids ob-
served in the two corresponding columns of the alignment. A typical alignment will contain
a few dozen sequences and therefore the matrix in general is very sparse. The unobserved
entries can be set to 0 or regularized to some small values using a standard Dirichlet prior
approach [5].

While this has not been attempted here, larger input could be considered where correla-
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tions are extracted not only between positionsi andj but also with respect to their neighbor-
hoods including, for instancei − 1, i + 1, j − 1, andj + 1. While this can compensate for
small alignment errors, they also rapidly lead to intractably large inputs that scale like202k,
wherek is the size of the neighborhood considered. Compression techniques using weight
sharing and/or higher-order neural networks would have to be used in conjunction with these
very expanded inputs.

In the experiments reported, we use inputs of size|I| = 20 (just the two amino acids or
the two profiles), as well as size|I| = 440 (the correlated mutation profile, plus the secondary
structure and solvent accessibility of each position).

6.3 Architectures

In the simulations, we consider first the problem of predicting protein contact maps at the
amino acid level. We use a 2D GIOHMM approach with four hidden plane lattices with di-
agonal edges associated with four similar but independent neural networks. In each neural
network we use a single hidden layer. Thus, a given architecture is described by three key
parameters: (1) the numberNHO of hidden units in the output neural network; (2) the num-
berNHH of hidden units in each of the four hidden neural networks associated with lateral
propagation in each of the four planes; and (3) the numberNOH of units in the output layer
of the four hidden neural networks, corresponding to the dimension of the vector encoding
a hidden state in each of the four hidden planes. While we have experimented with several
architectures, the results we report are forNHH = NHO = NOH = 8 corresponding to
17,114 parameters when an input of size20× 20 is used.

6.4 Learning and Initialization

Training is implemented on-line, by adjusting all the weights after the complete presentation
of each protein. A stronger version of on-line training that updates weights after the pre-
sentation of each(i, j) seems both unnecessary and inefficient. In the experiments reported
below, we trained the networks using half the data and tested on the remaining half. With
protein sequences of length less than 100, the training set had 266 sequences and the test set
267. We used a piecewise linear learning step [9], with a learning rateη equal to 0.1 divided
by the number of protein examples (266). Prior to learning, the weights of each unit in the
various neural networks are randomly initialized. The standard deviations, however, must be
controlled in a flexible way to avoid any bias and ensure that the expected total input into
each unit is roughly in the same range.

6.5 Results on Amino Acid Contact Maps

Results of contact map predictions at four distance cutoffs are provided in Table 2. In this
experiment, the system is trained on half the set of proteins of length less than 100, and tested
on the other half. These results are obtained with plain sequence inputs (amino acid pairs),
i.e. without any information about profiles, correlated mutations, or structural features. For a
cutoff of 8Å, for instance, the system is able of recovering 62.3% of contacts.

It is of course essential to be able to predict contact maps also for longer proteins. This
can be attempted by training the recurrent neural network architectures on larger data sets,
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Figure 8: Example of exact (left) and predicted contact map for protein 1DEEH, prior to symmetrization of the
prediction. Color code: blue = 0 (non-contact), red =1 (contact).

Table 2: Percentages of correct predictions for different contact cutoffs on the validation set. Model trained and
tested on proteins of length less than 100. Inputs correspond to simple pairs of amino acids in the sequence
(without profiles, correlated profiles, or structural features).

6Å 8Å 10Å 12Å
Far 99.1% 98.9% 97.8% 96.0%

Close 66.5% 62.3% 54.2% 48.1%
All 96.2% 93.9% 88.6% 81.0%

containing long proteins. While such experiments are in progress, it should be noted that
because the systems we have developed can accommodate inputs of arbitrary lengths, we
can still use a system trained on short proteins(l ≤ 100) to produce predictions for longer
proteins. In fact, because the overwhelming majority of contacts in proteins are found at linear
distances shorter than 100 amino acids, it is reasonable to expect a decent performance from
such a system. Indeed, this is what we observe in Table 3. At a cutoff of8Å, the percentage
of correctly predicted contacts for all proteins of length up to 300 is still 54.5%.

Table 3: Percentages of correct predictions for different contact cutoffs on the validation set. Model trained on
proteins of length less than 100, but tested on all proteins with length up to 300. Inputs correspond to simple
pairs of amino acids in the sequence.

6Å 8Å 10Å 12Å
Far 99.6% 99.6% 99.2% 97.8%

Close 64.5% 54.5% 45.7% 39.9%
All 98.3% 96.8% 93.7% 88.6%

A typical example of prediction is reported in Figure 8. In this example we display the
raw output of the network which isnot symmetric since symmetry constraints are not en-
forced during learning. A symmetric output is easy to derive from a non-symmetric output by
averaging the output values at positions(i, j) and(j, i). Application of this averaging proce-
dure yields a small improvement in the overall prediction performance, as seen in Table 4. A
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Table 4: Same as Table 3 but with symmetric prediction constraints.

6Å 8Å 10Å 12Å
Far 99.1% 98.9% 97.8% 96.0%

Close 67.3 (+0.8)% 63.1 (+0.8)% 54.9 (+0.7)% 49.0 (+0.9)%
All 96.3 (+0.1)% 94.0 (+0.1)% 88.7 (+0.1)% 81.3 (+0.3)%

possible alternative is to enforce symmetry during the training phase.

Table 5: Percentages of correct predictions for different contact cutoffs on the validation set. Model trained and
tested on proteins of length less than 100. Inputs of size20×20 correspond to correlated profiles in the multiple
alignments derived using the PSI-BLAST program.

6Å 8Å 10Å 12Å
Far 99.0% 98.9% 97.6% 96.1%

Near 67.9% 63.0% 55.3% 49.4%
All 96.3% 94.0% 88.5% 81.5%

Table 6: Percentages of correct predictions for different contact cutoffs on the validation set. Model trained
and tested on proteins of length less than 100. Same as Table 5 but inputs include also secondary structure
and relative solvent accessibility at a threshold of 25% derived from the DSSP program. Last row represents
standard deviations on a per protein basis.

6Å 8Å 10Å 12Å
Far 99.6% 99.5% 98.5% 95.3%

Near 73.8% 67.9% 58.1% 55.5%
All 97.3% 95.2% 89.8% 82.9%
Std 2.3% 3.7% 5.9% 8.5%

The results of additional experiments conducted with larger inputs are displayed in Ta-
bles 5 and 6. When inputs of size20 × 20 corresponding to correlated profiles are used, the
performance increases marginally by roughly 1% for contacts (for instance, 1.4% at 6Å and
1.3% at 12̊A) (Table 5). When both secondary structure and relative solvent accessibility (at
25% threshold) are added to the input, however, the performance shows a remarkable further
improvement in the 3-7% range for contacts. For example at 6Å contacts are predicted with
73.8% accuracy. The last row of Table 6 provides the standard deviations of the accuracy on
a per protein basis. These standard deviations are reasonably small so that most proteins are
predicted at levels close to the average. These results support the view that secondary structure
and relative solvent accessibility are very important for the prediction of contact maps and
more useful than profiles or correlated profiles. This is also confirmed by the results obtained
by this model (trained on short proteins with correlated profile inputs augmented by structural
features) when tested on proteins of length up to 300 (Table 7). At an 8Å cutoff, the model
still predicts over 60% of the contacts correctly, achieving state-of-the-art performance above
any previously reported results. In terms of off-diagonal prediction, the sensitivity for amino
acids satisfying|i− j| ≥ 7 is 0.27 at8Å and 0.45 at10Å, to be contrasted with 0.21 at8.5Å
reported in [17]. Finally, a further small improvement can be derived by combining the output
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of the four predictors using another similar architecture withNHH = NOH = NHO = 5
(Table 8) trained on the same data since no overfitting is detected. The global improvement
is most visible at12Å with a 0.5% improvement over Table 6. But even at6Å, there is a
non-trivial0.4% improvement on the prediction of contacts.

Table 7: Percentages of correct predictions for different contact cutoffs on the validation set. Model trained
on proteins of length less than 100, but tested on all proteins with length up to 300. Inputs include correlated
profiles, secondary structure, and relative solvent accessibility (at 25%).

6Å 8Å 10Å 12Å
Far 99.9% 99.9% 99.3% 95.1%

Near 70.7% 60.5% 51.3% 49.2%
All 98.8% 97.5% 94.4% 87.8%

Table 8: Percentages of correct predictions for different contact cutoffs on the validation set obtained by a
network combining four predictors trained on each distance cutoff. Model trained on proteins of length less
than 100 and tested on proteins with length up to 100. Inputs include correlated profiles, secondary structure,
and relative solvent accessibility (at 25%).

6Å 8Å 10Å 12Å
Far 99.6% 99.0% 97.4% 96.5%

Near 74.1% 70.8% 62.1% 54.8%
All 97.3% 95.2% 89.8% 83.4%

6.6 Results on Coarse Contact Maps

The method detailed in Section 4 have been tested for the prediction of protein contact maps
at the coarse level. Eight numerical features encode the input label of each node and comprise
one-hot encoding of secondary structure type; normalized linear distances from the N to C
terminus; average, maximum and minimum hydrophobic character of the segment (based on
the Kyte-Doolittle scale on moving 7-length window centered at all residues positions in the
segment). Note that the network model in its present implementation uses as input a minimal
amount of biologically significant information.

Table 9: Graph search with dynamic sampling: summary of experimental results. We report micro-averaged pre-
cision, recall, andF1, denotedmP , mR, andmF1, respectively. The corresponding macro averages are denoted
MP , MR, andMF1; mP (nc) andMP (nc) are the micro- and macro-averaged precisions in predicting non
contacts.

Sampling strategy mP mP (nc) mR mF1 MP MP (nc) MR MF1

Random exploration .715 .769 .418 .518 .767 .709 .469 .574
Semi-uniform exploration .454 .787 .631 .526 .507 .767 .702 .588
Pure exploitation .431 .806 .726 .539 .481 .793 .787 .596
Hybrid .417 .834 .79 .546 .474 .821 .843 .607

Several preliminary experiments were carried out to tune up the prediction system and
choose the best architectural parameters. Splitting the proteins into training, test and vali-
dation sets we selected a Bi-Recursive NN architecture with state vectors of dimension five
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(both for forward and backward dynamics) and without hidden layers. By using hidden layers
or a greater dimension for the state vectors we found the model particularly sensitive to the
overfitting phenomena. We then performed a set of experiments trying to figure out the effect
of the static training set generation as explained in Section 4. For each protein we generated a
sample of graphs by means of a search procedure towards the target graph guided by a perfect
evaluation function (but collecting all the valid successors during the search) ending up in a
total of 40,275 graphs. The above dataset was split in a training set of 300 proteins (19,574
graphs), a test set of 150 proteins (11,117 graphs) which was used to estimate the prediction
accuracy, and a validation set of 137 (9,584) used for early stopping. The adapted version of
BPTS for Bi-Recursive model was used as training procedure. The trained network replaced
s?(G) as a heuristic evaluation function in the subsequent topology search algorithm, which
was based on a beam search procedure with beam sizeB = 10. The search algorithm scales as
O(BW |V |2), beingW the number of weights in the network. In the following experiments,
we compare the graph search algorithms to the GIOHMM architecture of Section 3.1.
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Figure 9: Precision-recall plots comparing the search algorithm and GIOHMMS.

Results are summarized in Figure 9, where we plot macro- and micro-averaged precision
vs. recall. The graph is similar to a ROC curve (that plots true positive rate against false
positive rate for different cutoffs of a diagnostic test). Macro-averages are computed by av-
eraging precision and recall over the set of proteins. This measure tends to weight more the
performance on short sequences. Micro-averages are obtained by computing precision and
recall over the flattened set of segment pairs. The precision of the search algorithm is consis-
tently better than that of GIOHMM, although recall never reaches 100%. This is obtained at
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significant expense of CPU time, not only in the training phase, but also during prediction.
In a second experiment we investigated the effects of dynamic sampling (i.e. exploration)

during training. We applied the three exploration strategies described in Section 4: random
exploration, pure exploitation and semi-uniform exploration. The last one was applied trying
to find the optimal balance between exploration and exploitation. The probability of uni-
form random exploration was set toε = 0.4. In addition to these strategies, we also tried
a rather different approach in which the network agent always proceed greedily (i.e. as in
pure exploitation, at each step following always the best possible successor), but this time
the network being updated on a representative sample of current state set of successors. The
main purpose of this exploration scheme is to guide gradient descent towards a region where
parameters are optimized using the wide possible spectrum of values for candidate alterna-
tives. In these experiments, we used a 5-fold cross validation procedure splitting a represen-
tative set of 370 proteins into 5 subsets and routinely testing on one subset and training on
the remaining four. After cross validation for each exploration scheme we obtained the re-
sults indicated in Table 9. The first column is labeled with the different updating schemes
we applied. For each strategy we report performances measured with several indices: micro
and macro-averaged precision (mP , MP ), recall (mR, MR) andF1 measure (mF1, MF1).
Moreover, we report the percentage of correct prediction for non-contacts averaged over the
set of proteins (MP (nc)) and over the whole segments pairs (mP (nc)). Last row (Hybrid)
provides the indices obtained with the example selection strategy described above.

7 Conclusion

We have presented several new machine learning methods for predicting protein topologies
in the form of contacts between amino acids or between secondary structure elements. The
methods are based on a general class of Bayesian networks we call GIOHMMs that can be
used to process data structures of variable size associated with particular graphical supports,
whether sequences, lattices, trees, or more general graphs (as in the case of coarse contact
maps). For efficiency, these architectures can be replaced by their recursive neural network
versions we call GRNNs, which can be trained from examples by generalized gradient de-
scent methods. In the case of coarse contact maps, we used GIOHMMs ideas to learn a
scoring function that is used in turn to efficiently search the space of possible topological
configurations.

In simulations, we have shown that the 2D lattice GIOHMMs perform significantly better
than any other method on the prediction of fine-grained contact maps. For coarse contact
maps, the combination of GIOHMM/GRNNs with graph-search methods so far has yielded
the most promising results. Direction for future work include the integration of predictions
at different level of granularity and the computationally efficient extension of graph search
methods to fine-grained contact maps.
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