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analyze the massive
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available data on
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need new computing
methods. The authors
use machine-learning
methods in a novel,
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protein structure
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enome and other sequencing projects are producing a deluge of DNA and pro-

tein sequence data. In current databases and sequencing projects, roughly 30 per-

cent of proteins do not resemble any other known sequence and have no assigned struc-

ture or function. Another 20 percent are homologous to a known sequence whose structure

or function (or both) is largely unknown.

Proteomics is the protein counterpart to genomics,
the large-scale analysis of complete genomes. Pro-
teomes contain a cell’s total protein expression at a
given time. Proteome analysis not only deals with
determining protein-encoding genes’ sequence and
function, but is also strongly concerned with the pre-
cise biochemical state of each protein in its post-
translational form—that is, the form it takes after it
has been translated from its original DNA encoding.

Traditional experimental techniques for determin-
ing a protein’s structure and function, such as x-ray
diffraction or Nuclear Magnetic Resonance methods,
remain slow and laborious, and do not scale up to cur-
rent sequencing speeds. Furthermore, using experi-
ments to determine how proteins function is a daunt-
ing task: Protein interactions are complex, and their
native operating environments are very specific,
which can be difficult to replicate in the laboratory.

Researchers are developing many new high-
throughput experimental techniques for proteomics
applications, including mass spectrometry and pro-
tein chips. Still, given proteins’ fundamental impor-
tance to biology, biotechnology, and medicine, we
must continue developing computer methods that
can rapidly sift through massive amounts of data and
help determine the structure and function of all the
proteins in a given genome.

We’re applying machine-learning methods to pro-
teomic problems, and have developed a novel strat-
egy for completely predicting protein 3D coordinates.
The strategy has three stages: structural features pre-
diction, topology prediction, and coordinate predic-

tion. Here, we offer an overview of the domain and
our machine-learning techniques, and describe the
software suite we’ve developed, which is available at
http://promoter.ics.uci.edu/BRNN-PRED/.

Proteins: An overview

Proteins are polymer chains composed of 20 sim-
pler building blocks, or amino acids, that function as
the molecular machines of living organisms.
Although researchers first characterize proteins by
their primary sequences—that is, the corresponding
amino acid sequence—proteins typically fold into
complex, three-dimensional structures that are essen-
tial to their function. Some proteins serve as struc-
tural building blocks for cells, but most are molecu-
lar “processors” that interact with

e Each other (as in signaling networks)
e Smaller molecules (as in metabolic networks) and
e Genetic DNA information (as in regulatory networks)

to form life’s complex circuitry of biochemical reactions.

Protein classes
As Figure 1 shows, proteins can be partitioned into
two classes:

e Membrane proteins, which are embedded in cell
membranes and therefore live in a lipid environment

e Globular proteins, which are secreted from the
cell or segregated to nonmembrane compartments
(such as the nucleus or the cytoplasm), and there-
fore live in aqueous environments
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Membrane proteins often act as receptors, let-
ting the cell gather information about its exter-
nal environment. As such, they are often the
targets of drug development efforts. In most
known genomes, 20 to 30 percent of the pro-
teins are estimated to be membrane proteins.

Because of their environmental differ-
ences, the two protein classes have different
structural characteristics. Although mem-
brane proteins might seem more con-
strained—for example, their known sec-
ondary structure consists of all alpha helices
or, in a few cases, all beta strands—and hence
simpler, they are far more difficult to crys-
tallize. Thus, very few membrane protein
structures have been resolved and are avail-
able in the Protein Data Bank (PDB).

Our own work—as well as that of the
larger bioinformatics community—is
focused on globular protein structure, both
because there is more available data and
because they represent a larger fraction of all
proteins. The prediction of membrane pro-
tein structure is an important problem that
remains largely unsolved.

Problem scope

To a first approximation of a cell’s com-
plex biochemistry, a gene codes for a protein,
and there are approximately 40,000 genes in
a typical mammalian cell. Each correspond-
ing protein can exist in multiple copies, as
well as different chemical variants (post-
translational modifications), and thus a typ-
ical mammalian cell contains about 1 billion
protein molecules.

One powerful method for rapidly sifting
through protein data is homology, which uses
dynamic programming alignment methods
to look for evolutionarily related (and hence
similar) sequences in the databases of known
sequences. Strong sequence similarity
implies similar structure and function.
Homology works well when something is
known about a homologue sequence’s struc-
ture and function, and when the homology
degree exceeds 25 percent identical residues.
Thus, when they work, alignments methods
are extremely valuable and the method of
choice. Currently, however, they don’t work
in roughly half the cases, and we need other
methods to fill the gap.!

Structural proteomics

There are several complementary compu-
tational approaches for predicting a protein’s
structural features and three-dimensional
structure>3 including:

Ab initio

Homology modeling
Fold recognition
Lego

Machine learning

Ab-initio approaches minimize the energy
potential derived from physico-chemical and
statistical considerations. The minimization
process may or may not try to mimic the
folding process itself. The main obstacles in
this approach are trying to derive or approx-
imate the right potential, and the speed-up of
the resulting (and formidable) optimization
problem. The computational obstacles have
prompted efforts such as IBM’s BlueGene
supercomputer and Stanford’s protein fold-
ing@home distributed project.

In homology modeling methods, a given
protein is aligned to all its known homo-
logues. If the 3D structure of one homologue
sequence is known, then a structural model
can be inferred for the given protein. Fold-
recognition methods take a similar approach,
but thread the new sequence through all the
existing folds in the protein structure data-
bases until an optimal match is found. Dif-
ferences in the techniques come not only
from the alignment/threading phase, but also
from the fact that homologous sequences
occasionally have different structures and
nonhomologous sequences have similar
ones. Likewise, at the functional level, sim-
ilarly structured proteins occasionally carry
different functions, and proteins with simi-
lar function have different structures.

Researchers believe that natural protein fold
classes form a finite dictionary with only a few
thousand words. The PDB is the main repos-
itory of protein structures, containing over
15,000 (redundant) structures and undergoing
a phase of exponential growth, like most other
biological databases. Nowadays, homology
modeling and fold recognition approaches
share the same weaknesses when a suitable
target is not found in the PDB database. In
time, however, as the dictionary of structures
is completed (within a decade or so), these
approaches will provide a consistent and
effective solution to the structure prediction
problem, albeit perhaps not as satisfactory for
some as a purely ab initio approach.

In the Lego approach,* researchers extract
a structural dictionary from the PDB data-
base for small protein fragments consisting
of sequences of nine or so amino acids. They
then break a new sequence into consecutive
fragments, aligning each snippet to the dic-

Proteins

Globular
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Membrane
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Figure 1. Proteins can be subdivided into
two classes: membrane proteins and
globular proteins. Membrane proteins are
surrounded by membrane lipid bilayers
and have peculiar structural properties.
Roughly 25 percent of proteins in a typi-
cal genome are membrane proteins.

tionary and deriving a rough structure that
they convert (with some additional massag-
ing) into a final prediction. At the 2000 Crit-
ical Assessment of Protein Structure (CASP)
competition—an annual, international blind
comparison of structure predictors—the
Lego approach produced some of the best
results in 3D prediction.’

Finally, there are statistical or machine-
learning approaches. Machine-learning
approaches aim to extract information from
data—more or less automatically—through
a process of training from examples. Basi-
cally, it is a modern version of statistical
model fitting. Such methods are ideally
suited for domains with an abundance of data
and a lack of a clear theory, which is pre-
cisely the case in bioinformatics.

All of these prediction methods are com-
plementary, rather than exclusive, and can be
combined in many ways. Our machine-learn-
ing methods, for example, rely heavily on
multiple alignments and homology.

Machine-learning and secondary-
structure prediction

Researchers’ observations of thousands of
protein structures have revealed the universal
presence of three structural motifs: coils,
alpha helices and beta sheets; the latter two
are characterized by periodic hydrogen-bond-
ing patterns that researchers can detect using
a PDB 3D file with a program such as Define
Secondary Structure of Proteins (DSSP).® For
more than 15 years, researchers have used
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Figure 2. Bayesian network graphical model. The model underlies bidirectional, recur-
rent neural networks and consists of input units, output units, and both forward and

backward Markov chains of hidden states.
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Figure 3. A bidirectional, recurrent neural-network architecture. It has a forward con-
text (left side) and a backward context (right side) that are associated with two recur-
rent networks, which we think of as “wheels” that roll along the protein.

machine-learning approaches—particularly
neural networks—to predict proteins’ sec-
ondary structure, and have consistently had
the best secondary structure predictions.

State of the practice

As historical summaries show,” many
researchers have built successful secondary
structure predictors using feed-forward
neural networks with local input windows of
nine to15 amino acids.®” Over the years, per-
formance has steadily improved by about one
percent per year, thanks to increased training
data and several additional techniques,
including

7

e Output filters to clean up predictions

e Input or output profiles—associated with
homologous sequence alignments—espe-
cially at the input level

e Predictor ensembles

The main weakness of these approaches
likely resides in researchers’ use of a local
window that cannot capture long-ranged
information, such as that present in beta
sheets. This is partially corroborated because
the beta sheet class always has the weakest
performance results. Substantially increasing
the input window’s size, however, does not
seem to improve performance. The reason is
related to overfitting and the weak signal-to-

noise ratio associated with long-ranged inter-
actions; the latter play an important role, but
are sparse and therefore hard to detect.

We’ve described our methods for trying to
overcome the limitations of simple feed-for-
ward networks elsewhere.!%-!2 Basically,
they consist of bidirectional, recurrent neural
networks (BRNN5s) capable of capturing at
least partial long-ranged information with-
out overfitting. As Figure 2 shows, we base
these architectures on a probabilistic graph-
ical model, in which inputs are transformed
into outputs using both forward and back-
ward Markov chains of hidden states.

In one sense, this is a generalization of hid-
den Markov models (HMMs), accomplished
by adding the input states and the backward
chain. The backward chain is predicated on
the fact that biological sequences are spatial
objects, rather than temporal sequences.
However, the models’ information and learn-
ing propagation is somewhat slow due to
numerous undirected graph loops. We obtain
a faster architecture by reparameterizing the
graphical model using neural networks that
are stationary with respect to time, thereby
creating a BRNN architecture (see Figure 3).

BRNN architectures

In these general sequence-translation archi-
tectures, a translation or prediction at a given
position depends on a combination of local
information, provided by a standard feed-for-
ward neural network and more distant context
information. More precisely, letting # denote
position within a protein sequence, the over-
all model outputs a probability vector O, for
each #, which represents the residue’s mem-
bership probability at position ¢ in each of the
three classes. Three normalized exponential
output units implement the output. The out-
put prediction’s functional form is:

O,=n(Fy, B, 1,,)

and depends on the forward (upstream) con-
text F,, the backward (downstream context)
B,, and the input /, at time #. The vector /,
RF¥encodes the external input at time . In the
simplest case, where input is limited to a sin-
gle amino acid, k=20 by using orthogonal
encoding. Larger input windows extending
over several amino acids are also possible.
The function 7 is realized by a neural net-
work N, (the center and top connections in
Figure 3). We assess the model’s perfor-
mance using the relative entropy between the
estimated and target distribution.
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Figure 4. Overall pipeline strategy for machine-learning protein structures. The example here is the Subtilisin-Propeptide Complex
(1SQJ) protein. In the first state, modules predict structural features including secondary structure, contacts, and relative solvent
accessibility. In the second stage, modules predict the protein’s topology, using the primary sequence and the structural features.
The coarse topology is represented as a cartoon, providing the relative proximity of secondary structure elements, such as alpha
helices and beta strands. The contact map between the protein residues represents the high-resolution topology. In the final stage,

our strategy predicts the actual 3D coordina

The model’s novelty is in the contextual
information in the vectors F, € R", and espe-
cially in B, € R™. These satisty the recurrent
bidirectional equations

Fi=¢F, 1)
B, = ﬁ (Bi15 1)

Here, ¢(-) and f3(-) are learnable, nonlinear
state transition functions, implemented by two
NNs, Ny and Ng (the left and right subnet-
works in Figure 3). The boundary conditions
for F, and B, are set to O—that is,
Fy=B7,,=0, where T'is the length of the exam-
ined protein. Intuitively, we can think of F, and
B, as “wheels” that we roll along the protein.
To predict the position ¢ class, we roll the
wheels in opposite directions from the N and
C terminus up to position ¢, and then combine

tes of all the structure’s atoms.

what we read on the wheels with /; to calculate
the proper output using 1. We train all the
BRNN architecture weights, including those
in the recurrent wheels, in a supervised fash-
ion using examples extracted from PDB and
a generalized form of gradient descent or
backpropagation through time—that is, by
unfolding the wheels in time, or rather, space.
To achieve architectural variations, we change
such things as the input windows’ size, the
window size of hidden states that determine
the output, the number of hidden layers, and
the number of hidden units in each layer.

Predicting 3D structure: The
pipeline strategy

While secondary structure plays an essen-
tial role in both folding and 3D structure and
is directly implicated in several biological

processes, it is still a far cry from the 3D
structure. But could a machine-learning sys-
tem be extended to predict a 3D structure?
Training a large neural network to translate
primary sequence information directly into 3D
coordinates is likely to fail. Overfitting issues
are compounded by the problem’s high degen-
eracy: rotating or translating the protein com-
pletely changes the coordinates, but leaves the
structure invariant. Translation and rotation
invariance must be built into the prediction
learning system. Thus, our current strategy for
3D structure prediction is to decompose the
problem into three steps (see Figure 4).

Step 1: Structure prediction

We first predict several of the primary
sequence’s structural features. Typical struc-
tural features include
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Figure 5. Performances of ACCpro for the recognition of buried and exposed amino
acids for 20 different thresholds of relative solvent accessibility. For thresholds in the
10- to 40-percent range, given a comparable number of exposed and buried residues,
the BRNNs ensemble outperforms the baseline predictor by 10 percent or more.

e Secondary structure

e Relative solvent accessibility (whether a
given amino acid is on a protein’s surface
or buried inside its hydrophobic core; see
Figure 5)

e Coordination or contact number (the num-
ber of a given amino acid’s neighboring
amino acids within a certain radius; see
Table 1)

e Disulphide bonds
e Amino acids coupled by beta sheet
strands'>!# or by disulphide bonds

Step 2: Topology prediction

Next, we move from the protein’s primary
sequence and structural features to a topo-
logical representation, which is invariant

Table 1. Correct prediction percentages for coordinating numbers at four distance
cutoffs using seven different BRNNs and their combinations.

Model

6A
0 71.59
1 72.03
2 71.04
3 71.39
4 69.99
5 69.77
6 69.95
73.02
73.24

Model ensemble
All four ensembles

Radiuses

8A 10A 124
69.29 71.04 73.00
69.45 70.96 72.42
68.91 70.58 72.71
69.28 70.84 72.68
67.80 69.79 72.54
67.72 69.54 71.93
67.49 70.16 71.69
70.57 72.00 73.93
70.95 7213 74.09

under rotation and translation. At a coarse
level, this is the contact matrix between sec-
ondary structure elements, which in its sim-
plest form describes whether the gravity cen-
ters of two secondary structure elements in
the 3D structure are close. A database of
coarse-level topological representations, in
cartoon form, called TOPS, !’ is available at
www3.ebi.ac.uk/tops/. With a higher reso-
lution, this is the contact matrix between the
protein chain’s individual amino acids.

Our current approach to the problem rests
on a generalization of BRNNs’ underlying
graphical model, which processes one-
dimensional objects (see Figure 2). Figures
6 and 7 show this architecture’s generaliza-
tion to two-dimensional objects, such as con-
tact maps. In its basic version, the Bayesian
network consists of nodes regularly arranged
in six planes: one input plane, one output
plane, and four hidden planes.

As in the one-dimensional case, numerous
variants of these ideas are possible, including

e Using input or output layer windows

e Adding connections in the hidden planes

e Using only a subset of hidden planes,
rather than the full complement

Only the full complement, however,
allows a directed path from any input unit to
any hidden unit. With contact map predic-
tion, relevant inputs can include the actual
sequences and the corresponding profiles, or
the corresponding alignment’s pairwise sta-
tistics to capture information about correlated
mutations. Higher-order statistics could also
be helpful if combined with a mechanism to
control combinatorial explosion (possibly
using higher-order neural networks). We also
consider secondary structure and relative sol-
vent accessibility information as inputs. As
in the one-dimensional case, we achieve
faster processing by reparameterizing the
graphical models with recurrent neural net-
works.

The graphical models introduced for Fig-
ure 2’s one-dimensional case and Figure 6’s
two-dimensional case can easily be general-
ized to the case of n dimensions. In 3D, for
example, the complete architecture requires
eight hidden planes, one for each corner of
the cube. In n dimensions, the full comple-
ment requires 2" hidden planes, one for each
corner of the hypercube. While it might be
possible to use the graphical models’ 3D ver-
sion for protein 3D-structure prediction, here
we briefly discuss an alternative approach for
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Figure 6. General layout of Bayesian net-
work for processing two-dimensional
objects. Units are regularly arranged in
one input plane, one output plane, and
four planes of hidden units. The square
lattice edges in each hidden plane are
oriented toward one of the four possible
cardinal corners: NE, NW, SW, SE.

the strategy’s last step.

Step 3: 3D-structure prediction

In contrast with our strategy’s first two
stages, which heavily rely on machine-learn-
ing methods, we can address the third stage
using distance geometry and optimization
techniques'® without learning. Various
implementations are possible; any must deal
with chirality issues, because, for example,
aprotein and its mirror image yield the same
contact map. Current algorithms seem to
work well for relatively short proteins (up to
150 amino acids), but for longer proteins,
they often fail to recover reasonable 3D
structures (within 5A of root mean square
deviation on backbone carbon atoms).

A fundamental question that the literature
has yet to systematically address is the amount
of noise that the predicted contact map can
tolerate without compromising coordinate
prediction. Also, if necessary in the future, we
could add feedback projections, such as from
the topology to the structural features.

Project status and results

We are using our pipeline strategy to build
a suite of structure prediction programs and
servers, and combining them into a complete
3D-prediction pipeline software package.

Figure 7. Connection details within one of Figure 6’s columns. The input unit is
connected to the four hidden units, one in each hidden plane. The input unit and the
hidden units are connected to the output unit. I;; is the input vector at position (i,j).
0, is the corresponding output. The figure also shows each hidden unit's connection
to its lattice neighbors within the same plane.

The state of the package
Our suite now contains

e SSpro, a secondary-structure predictor
(three categories)

SSpro8, a secondary-structure predictor
(eight categories)

ACCpro, an accessibility predictor

e CONpro, a contact predictor

Each of these has an available server at
http://promoter.ics.uci.edu/BRNN-PRED/.
Users can submit a protein sequence and
select the prediction categories from their
browser windows. We email predictions to
users as soon as possible, depending on
server load. Currently, the servers are aver-
aging around 250 queries a day.

We also have several additional compo-
nents in development, including
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e Dipro, for predicting disulphide bonds

e BETApro, for predicting beta sheet amino
acid and strand partners

e COMADpro for predicting contact maps

¢ COMATO3Dpro, for predicting 3D coor-
dinates from contact maps

e 3Dpro, for 3D prediction

We’ve completed development of COMApro,
COMATO3Dpro, and 3Dpro, and expect them
to be online for the 2002 CASP5 experiment.

Performance

The SSpro secondary-structure-prediction
server was ranked among the world’s top pre-
dictors both at the CASP’00 competition and
by Columbia University’s Burkhard Rost,
who ran an independent AUTOMATIC eval-
uation of automatic structure-prediction
servers (http://cubic.bioc.columbia.edu/eva/).

We released SSpro 2.0 in April 2001 and
expect to release SSpro 3.0 in time for the
CASPS5 experiment. The new version uses
more sensitive algorithms for constructing
input profiles and currently achieves 78.1
percent correct classification at the single
amino acid level, using the hard CASP
assignment for collapsing the DSSP pro-
gram’s eight output classes into the three
standard secondary-structure classes. Given
an alternative, easier assignment (but also
widely used in the literature), SSpro 2.0’s
correct prediction rate is more than 80 per-
cent.'? This performance exceeds that of sim-
ple feed-forward neural networks trained on
the same data by a few percentage points.
Tests also show that the wheels are indeed
capable of extracting information over
regions that extend beyond the traditional
local window.!°

We did not achieve such results by simply
training a machine-learning system on raw
PDB data. We put considerable effort into
preparing appropriate training and testing
sets, using rigorous cleanup procedures that
are essential to success. The procedures
involve removing chains that, for example,
are too short, have poor resolution, or cause
DSSP to crash. Even more important, these
procedures must remove any sequence
redundancy from the sets, since uneven
space-sequence sampling or a high concen-
tration of similar structures can introduce sig-
nificant learning process biases. //okay?// We
achieve redundancy reduction by using
all-against-all pairwise sequence alignments
and eliminating the lower quality homo-
logues when similarity is detected.'? Cur-

rently, large cleaned-up sets are about one-
fifth the size of the PDB, with well over
3,000 sequences. We also put considerable
work into producing suitable profiles.3-10:12

Statistical correlations between secondary
structure and contact number or accessibility
are quite low, and it therefore makes sense to
develop separate predictors. We use BRNNs
in all the corresponding machine-learning
architectures. Current accessibility perfor-
mance is 77.51 percent (at 15 percent thresh-
old). Figure 5 shows performances for dif-
ferent accessibility thresholds, against the
baseline predictor, which outputs the most
numerous categories.!” Contact prediction
performance is 73.24 percent (at 6A) or 74.09
percent (at 12A;14 see Table 1). In both cases,

The 55pro Secondary-srucfure-
prediction server was ranked
among the world's fop predictors

both af the CASP00 compelition
and by Columbia University's
Burkhard Rost.

the results are better than any previously
reported, often by several percentage points.

In general, machine-learning methods for
predicting proteins’ secondary structure and
other attributes continue to improve, at an aver-
age annual rate of about 1 percent. They are
also reaching good performance levels—close
to 80 percent for secondary structure. Such
improvements originate both from data expan-
sion and new algorithmic developments.

Outstanding issues

As is invariably the case with biological
problems, the notions of protein structure and
function have fuzzy boundaries. Therefore,
we can’t expect perfect prediction in all
cases. At the structural level, some proteins
do not fold spontaneously and require other
proteins (chaperones) for proper folding.
Furthermore, some proteins exist in differ-
ent structural conformations, and conforma-
tions can depend on external variables, such
as solvent acidity. In many cases, several dis-
tinct protein chains aggregate to form

so-called quaternary structures that cannot
be predicted from single chains. We don’t yet
know whether the limit horizon of secondary
structure prediction, for example, is 85 or 95
percent. For now, prediction efforts should
continue unabated.

At the protein function level, the situation
is even more complex. Function strongly
depends on the surrounding molecular con-
text and inherently covers many different
topics and questions, including

e Molecular function (such as enzymatic
catalysis and membrane transport) and
conformation and active site analysis

o Cellular function (such as inter/intracellular
communication, structure, and movement)

e Physiological function (such as organ
development)

e Phenotypical function (such as visible
effects)

e Disfunction (such as the effect of absent
or mutated protein)

e Transcriptional and posttranscriptional
modifications (such as RNA editing)

e Posttranslational modifications (such as
phosphorylation and glycosylation)

e Cellular localization (such as nuclear,
cytoplasmic, membrane, or secreted)

Here again, machine-learning methods,
together with other experimental and com-
putational approaches, can make valuable
contributions. Consider, for example, post-
translational modifications. Once translated
from their original DNA sequence, proteins
often undergo numerous modifications that
alter their activities. For example, certain
amino acids can be linked covalently (or non-
covalently) to carbohydrates, representing
so-called glycosylation sites. Other amino
acids are subjected to phosphorylation,
where phosphate groups are added to the
polypeptide chain. Kinases, for example, are
an important family of proteins involved in
phosphorylation that use this process as a
mean of transmitting information along
many different cell pathways.

Many other types of posttranslational
modifications exist, such as fatty-acid addi-
tions and signal peptide cleavage in the
N-terminus of secretory proteins translocated
across a membrane. In fact, there are several
hundred kinds of posttranslational modifica-
tions. Genomic data does not explicitly pre-
sent knowledge of such posttranslational
sites, but it can provide important clues to
function or localization, and we can recover
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it from the primary sequence.

With the growth of databases and avail-
able training examples, we can train neural
networks, HMMs and other machine-learn-
ing systems to detect signal peptides, glyco-
sylation sites, phosphorylation sites, and so
on,” or to recognize specific protein classes,
such as membrane proteins (see, for exam-
ple, the servers at www.cbs.dtu.dk or the
HMM programs at www.netid.com or http://
hmmer.wustl.edu/”).

Again, with sufficient resources, a small
team of researchers can create an entire suite
of such programs and regularly update them
with larger training sets. With offline train-
ing, such a suite can rapidly sift through large
volumes of data.

Although machine-learning methods
today cannot by themselves entirely describe
a new protein’s function, they can provide
valuable information regarding numerous
functional attributes. In turn, you can couple
such a suite with other information, includ-
ing that from homology, structure, DNA
microarrays and other high-throughput tech-
nologies, and literature searches.

P redicting proteins’ structure and func-
tion is a central problem in bioinfor-

matics. Itis the hinge and bottleneck between
sequencing efforts and drug design. Solving
this problem should result in new enabling
technologies in medicine and biotechnology.
Although the protein structure and function
taxonomy is complex, we can break it down
into manageable aspects and categories. For
each of them, researchers are rapidly pro-
ducing increasing amounts of data and mak-
ing them publicly available in repositories
and databases. This creates significant oppor-
tunities for intelligent system approaches to
complement useful but insufficient methods,
such as homology searches. Unlike conven-
tional experimental methods, the resulting
programs can rapidly sift through large
amounts of data, and are readily applicable to
new natural or synthetic sequences. 8
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