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ABSTRACT Knowing the coordination number
and relative solvent accessibility of all the residues
in a protein is crucial for deriving constraints useful
in modeling protein folding and protein structure
and in scoring remote homology searches. We de-
velop ensembles of bidirectional recurrent neural
network architectures to improve the state of the
art in both contact and accessibility prediction,
leveraging a large corpus of curated data together
with evolutionary information. The ensembles are
used to discriminate between two different states of
residue contacts or relative solvent accessibility,
higher or lower than a threshold determined by the
average value of the residue distribution or the
accessibility cutoff. For coordination numbers, the
ensemble achieves performances ranging within
70.6–73.9% depending on the radius adopted to dis-
criminate contacts (6Å–12Å). These performances
represent gains of 16–20% over the baseline statisti-
cal predictor, always assigning an amino acid to the
largest class, and are 4–7% better than any previous
method. A combination of different radius predic-
tors further improves performance. For accessibil-
ity thresholds in the relevant 15–30% range, the
ensemble consistently achieves a performance above
77%, which is 10–16% above the baseline prediction
and better than other existing predictors, by up to
several percentage points. For both problems, we
quantify the improvement due to evolutionary infor-
mation in the form of PSI-BLAST-generated profiles
over BLAST profiles. The prediction programs are
implemented in the form of two web servers, CON-
pro and ACCpro, available at http://promoter.ics.
uci.edu/BRNN-PRED/. Proteins 2002;47:142–153.
© 2002 Wiley-Liss, Inc.
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INTRODUCTION

One approach toward predicting the structure of a
protein is to predict a number of key attributes, in particu-
lar secondary structure, solvent accessibility, and coordina-
tion number. Deriving an accurate contact map from the
primary sequence and these attributes is emerging as a

promising strategy for solving the structure prediction
problem.1,2 For most of these attributes, machine learning
methods in general, and more specifically neural network
approaches, have proved particularly effective. For in-
stance, the best secondary structure predictors today are
neural network-based, with performance in the 75–80%
range and these continue to improve.2–4 In this work, we
develop recurrent neural network methods for the im-
proved prediction of coordination number and solvent
accessibility.

Coordination Number

Knowing the correct positions of residue contacts in
proteins has proved extremely useful in determining the
three-dimensional (3D) structure of a given protein, as
demonstrated in the CASP3 and CASP4 competitions
[http://predictioncenter.llnl.gov/].2,5 The number of stabiliz-
ing contacts that residues make in the protein-folded
globule (see ref. 6, for a review) is a fundamental aspect of
protein structure that is well worth predicting. In particu-
lar, this number can be used to “clean up” noisy contact
map predictions, on the basis of primary sequence and
secondary structure information. Furthermore, when a
remote homology is searched, it benefits from deriving a
surface potential from the distribution of contact numbers
for each residue. This is computed by implementing an
inverse of the Boltzmann rule,7 or by using the notion of
contacts among residues to improve existing threading
algorithms.8 In an off-lattice context, the number of con-
tacts for each residue, or coordination number, is com-
puted inside a spherical cutoff centered on each residue by
counting the number of residues falling inside the sphere.7

During the past few years, researchers have made a
number of attempts to predict contacts9–11 and distances
among residues in proteins,12–14 with some degree of
success. In ref. 15, a feed-forward neural network ap-
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proach with a local window was developed to discriminate
between two different states of residue contacts, character-
ized by a contact number higher or lower than the average
value of the residue distribution. For a contact radius of
6.5 Å, this approach achieved a performance of 69% correct
prediction, 12% above the level of the simple baseline
classifier. By definition, the baseline classifier always
selects the most frequent category for each amino acid
independent of its environment.16

Solvent Accessibility

A second important feature of protein structural organi-
zation is the degree to which residues in the structure
interact with the solvent molecules. Relative solvent acces-
sibility classes are usually derived from the DSSP pro-
gram17 by normalizing it at the maximum value of exposed
surface area obtainable for each residue. Different arbi-
trary threshold values of solvent accessibility are chosen to
define binary categories (buried and exposed) or ternary
categories (buried, partially exposed, or exposed).

Prediction of residue accessibility has been attempted
with different methods based on neural networks with18 or
without19 evolutionary information, Bayesian methods,20

residue substitution matrices,21 and information theory22

(see also refs. 23–25). The baseline approach26 classifies
residues into a burial or nonburial category, using only the
identity of the residue, independent of the surrounding
context. Despite its simplicity, the baseline is as accurate
as many previous more sophisticated methods. A compari-
son of all the available methods reported in ref. 16 showed
that accuracy values level off �69–71% when single
protein sequences are used.

Recently, some groups22,25,26 have revisited the problem
of solvent accessibility prediction, using larger data sets.
Naturally, the accuracy of the prediction depends on the
threshold value of solvent accessibility. JNET26 has been
improved by means of new alignment methods, and the
highest performance of 76.2% is achieved when the solvent
accessibility threshold is 25%. Using approaches based on
information theory and multiple sequence alignments, an
accuracy of 71.5% with a threshold cutoff of 20% has been
reported in ref. 25. A similar method, trained and scored
using a program different from DSSP to compute solvent
accessibility, has a reported accuracy of 74.4% when the
relative solvent accessibility threshold is set at 25%.22

Based on the notion that less exposed residues are
preferentially involved in hydrophobically driven chain
compaction, solvent accessibility also has been routinely
used to evaluate the number of residue contacts. To
simulate the hydrophobic collapse in model proteins, the
number of residue contacts is chosen as the inverse
measure of residue solvent accessibility and, in the case of
simple lattice protein models, is the only source of interac-
tion.27 In ref. 15, it was shown that, although a strong
correlation between accessibility and contact number is
commonly accepted, residue surface accessibility has a
different distribution from the number of residue contacts,
so that residue classification may be different, depending
on which property is highlighted. This finding, which

ought to be confirmed by a statistical correlation analysis,
would support at least a partial separation between the
problems of predicting coordination number and relative
solvent accessibility.

Here we first extract a large curated data set of contact
and accessibility information from the Protein Data Bank
(PDB)28 and generate a set of corresponding profiles using
the BLAST,29 and PSIBLAST30 alignment/search pro-
grams. We compute detailed contact, accessibility, and
secondary structure correlation statistics on this set and,
in particular, examine the effect of the contact radius,
ranging within 6–12 Å, as well as various accessibility
thresholds. More importantly, we then develop a class of
bidirectional recurrent neural network architectures, ca-
pable of partially capturing long-range information. In
combination with the evolutionary profiles, these architec-
tures are applied to the problem of predicting coordination
number and relative solvent accessibility.

MATERIALS AND METHODS
Data Preparation
Coordination number

As is always the case in machine-learning approaches,
the starting point is the construction of a well-curated data
set. The data set used in this study was extracted from the
PDB_select list31 of June 2000. The list of structures and
additional information can be obtained from the following
ftp site: ftp://ftp.embl-heidelberg.de/pub/databases. To
avoid biases, the set is redundancy-reduced, with an
identity threshold based on the distance derived in ref. 32,
which corresponds to a sequence identity of roughly 22%
for long alignments, and higher for shorter ones. This set is
further reduced by excluding those chains whose backbone
is interrupted. We run Kabsch and Sander’s DSSP pro-
gram17 on all the PDB files in the PDB-select list; exclud-
ing those on which DSSP crashed because of such factors
as missing entries, erroneous entries, or format errors.
The final set consists of 1,086 protein chains containing a
total of 166,750 residues.

We compute the number of inter-residue contacts for
each residue in the data set by defining a spherical protein
volume centered on the Calpha atom, with a given radius R
Å, and counting the number of additional Calpha atoms
contained in the sphere. Thus, by this definition, a residue
is in contact with its immediate primary sequence neigh-
bors, but not with itself. For a given radius R, we compute
the average number of contacts for each amino acid over
the entire set (Table I). Each residue in a chain is then
assigned to class 0 if the number of neighbors within the
radius R is lower than the average, and to class 1 if higher
than the average. The process was repeated for radii of 6,
8, 10, and 12 Å. For each radius, the range, average, and
per amino acid distribution of the number of contacts are
displayed in Table I and Figures 1 and 2.

In order to perform threefold cross-validation experi-
ments, the data are then split evenly into three subsets,
each containing 362 proteins (Table II). In all three
subsets, the two classes are distributed almost evenly.
Class 0 is slightly more numerous than class 1 for all four
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radii, ranging from a minimum of 50.91 for 10 Å to a
maximum of 52.12 for 8 Å over the total set. This effect is to
be expected, as the possible contact values below the
average have a more restricted range than the values
above the average. The total number of amino acids in
each cross-validation experiment is approximately 165,000:
110,000 used as a training set and 55,000 as a test set
(Table III).

Solvent accessibility

For solvent accessibility, we use the same data set as for
the number of contacts, except that 78 additional se-
quences have to be removed, leaving a total of 1,008
sequences. The removed sequences correspond to PDB
files containing residues that are not completely resolved
(i.e., with only Calpha or Cbeta atoms) or nonstandard amino
acids. We build predictors for the two-state relative solvent
accessibility. Accessibility values are computed again us-
ing the DSSP program. To predict the relative solvent
accessibility RA(i) of each residue i, we calculate RA(i) �
100 * ACC(i)/MAXA(i), where ACC(i) is the solvent accessi-
bility of residue i, as computed by the DSSP program (in
Å2), and MAXA(i) is the maximal accessibility of amino
acid type i.17

For each relative accessibility percentage R, Figure 3
displays the percentage of amino acids that are more
buried than R. As expected, most amino acids tend to be
buried: roughly 50% are less than 25% exposed. Thus,
when choosing a threshold for the classification, values
around 25% are the most informative.

To perform threefold cross-validation experiments, the
data are split in the same fashion as for coordination
number, although in this case some sequences are missing.
Twenty different classification schemes are extracted,
from 0–95% exposure, with incremental steps of 5%. Table
IV displays the number of amino acids for each classifica-
tion threshold and for each of the three subsets, as well as
for the entire set.

Profiles

It is well known that evolutionary information in the
form of multiple alignments and profiles significantly
improves the accuracy of, for instance, secondary structure
prediction methods.3,26,33–35 This is so because the second-
ary structure of a family is more conserved than the
primary amino acid sequence. Similar effects have been

reported for the prediction of contact number and relative
solvent accessibility. For instance, in the case of contact
number, an improvement of 3% has been reported in ref
15, using profiles over individual sequences. For relative
solvent accessibility, a corresponding increase of 5% has
been described both with neural networks33 and Bayesian
methods.20 The work in ref. 3, has shown that, at least in
the case of secondary structure, carefully generated PSI-
BLAST profiles can give better results than BLAST pro-
files. We derive both BLAST and PSI-BLAST profiles and
compare their effects on prediction performance.

BLAST

A first set of input profiles is constructed by running the
BLAST program,28 with standard default parameters (E �
10.0, BLOSUM62 matrix), against the nonredundant (NR)
database. The version used was available online in Octo-
ber 1999 and contained approximately 420,000 protein
sequences. For redundancy reduction, instead of using a
hard threshold that requires an arbitrary choice, we use a
graduated weighting scheme by assigning to each se-
quence a weight that measures how different the sequence
is from the profile. Highly redundant sequences are as-
signed a lower weight. For any given sequence, the theoreti-
cal weight of information is given by the sum over all
columns in the profile of the Kullback–Liebler distance
between the delta distribution associated with the compo-
sition of the sequence in the column and the corresponding
profile distribution.4 Formally, the weight of sequence s is
then

W�s� � � �
c

logP[s(c)] (1)

where P[s(c)] is the probability of letter s in profile column
c. In summary, every sequence in a given alignment is
assigned a weight proportional to the Shannon informa-
tion the sequence carries with respect to the unweighted
profile. A weighted profile matrix is then compiled and
used as input for the system (see also ref. 35).

PSI-BLAST

A second set of profiles is generated by PSI-BLAST.29 All
proteins are aligned against the NR database. Alignments
are generated by the following four-step protocol.36 First,
filter and remove all database sequences with COILS to
mark coiled-coil regions37 and SEG to mark regions of low
complexity.38 Second, align the query protein against this
filtered database with an E-value threshold for the itera-
tion of 10�10 (PSI-BLAST h threshold) and a final thresh-
old of E � 10�3 to accept hits. The number of iterations is
restricted to three to avoid drift.3,36 Third, align the query
against the unfiltered SWISS-PROT � TrEMBL � PDB
using the previously found, position-specific profile. Fi-
nally, use the same weighting scheme as in the case of
BLAST profiles to balance the profile and remove redun-
dancy.

Recurrent Neural Network Architectures

Feed-forward neural networks have been one of the
major machine-learning tools used in protein structure

TABLE I. Average and Range of Number of Contacts for
Each Radius Across All Amino Acids

6 Å 8 Å 10 Å 12 Å

Avga 5.33 9.55 16.93 27.20
Minb 4.21 (P) 8.36 (E) 14.41 (E) 22.97 (E)
Maxc 6.08 (C) 11.50 (C) 20.27 (C) 32.08 (I)
aAverage over all amino acids.
bLowest average number over all 20 amino acids with corresponding
amino acid in parentheses.
cHighest average over all 20 amino acids with corresponding amino
acid in parentheses.
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prediction problems that range from the prediction of
secondary structure to the number of contacts. The major
weakness of feed-forward neural networks, however, is the
use of a local input window of fixed size, which cannot
provide any access to long-range information. Networks
for contact prediction, for instance, have windows of size
1–15. Larger windows usually do not work, in part because
the corresponding increase in the number of parameters
leads to overfitting. Increase in the number of parameters,
however, is not necessarily the main obstacle per se
because data are becoming abundant and techniques such
as weight sharing can be used to mitigate the risk of
overfitting. The main problem is that long-range signals
are very weak compared to the additional “noise” intro-
duced by a larger window. Thus, larger windows tend to
dilute sparse information present in the input that is
relevant for the prediction.

The methods we use are designed to attempt to over-
come the limitations of simple feed-forward networks have
been described in refs. 35, 39, and 40 and consist of

bidirectional recurrent neural networks (BRNNs). Letting
t denote position within a protein sequence, the overall
model for binary classification outputs for each t, a number
Ot(0 � Ot � 1) representing the membership probability of
the residue at position t in the class. In the coordination or
accessibility prediction applications, the output consists of
a single logistic output unit that estimates the probability
that the coordination number (respectively, solvent acces-
sibility) is higher or lower than the average, or accessibil-
ity, cutoff in the center of the corresponding input window.

The output prediction has the functional form

Ot � ��Ft,Bt,It� (2)

and depends on the forward (upstream) context Ft, the
backward (downstream context) Bt, and the input It at
time t. The vector It � IRk encodes the external input at
time t. In the most simple case, where the input is limited
to a single amino acid, k � 20 by using orthogonal
encoding. Larger input windows extending over several

Fig. 1. Distribution of number of contacts for amino acids A–L in alphabetical order: dotted blue, 6 Å; solid
green, 8 Å; dashdot red, 10 Å; dash light blue, 12 Å. x-axis � number of contacts, y-axis � probability.
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amino acids are also possible. The function � is realized by
a neural network �� (see center and top connections in Fig.
4). The performance of the model can be assessed using the
relative entropy between the estimated and the target
distribution.

The novelty of the model is in the contextual information
contained in the vectors Ft � IRn and especially in Bt �
IRm. These satisfy the recurrent bidirectional equations:

Ft � �(Ft�1,It)

Bt � 	(Bt�1,It) (3)

where �( � ) and 	( � ) are learnable nonlinear state transi-
tion functions, implemented by two NNs, ��, and �	 (left
and right subnetworks in Fig. 4). The boundary conditions

Fig. 2. Distribution of number of contacts for amino acids M–Y in alphabetical order: dotted blue, 6 Å; solid
green, 8 Å; dashdot red, 10 Å; dash light blue, 12 Å. x-axis � number of contacts, y-axis � probability.

TABLE II. Threefold Cross-validation Subset Statistics
With Number of Amino Acids in Each Class

Class 6 Å 8 Å 10 Å 12 Å

Total set 0 85119 86906 84886 86401
n166750 AA 1 81631 79844 81864 80349

Subset 1 0 28415 29344 28675 29357
55859 AA 1 27444 26515 27184 26502

Subset 2 0 28072 28008 27430 27860
54355 AA 1 26283 26347 26925 26495

Subset 3 0 28632 29554 28781 29184
56536 AA 1 27904 26982 27755 27352

TABLE III. Typical Training Set Statistics Taken from the
First Set

Sets Class 6 Å 8 Å 10 Å 12 Å

Train 0 56704 57562 56211 57044
Train 1 54187 53329 54680 53847
Test 0 28415 29344 28675 29357
Test 1 27444 26515 27184 26502
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for Ft and Bt are set to 0, i.e., F0 � BT�1 � 0, where T is the
length of the protein being examined. Intuitively, we can
think of Ft and Bt as “wheels” that can be rolled along the
protein. To predict the class at position t, we roll the
wheels in opposite directions from the N- and C-terminus
up to position t and then combine what is read on the
wheels with It to calculate the proper output using �.

All the weights of the BRNN architecture, including the
weights in the recurrent wheels, can be trained in a
supervised fashion from examples by a generalized form of
gradient descent or backpropagation through time, by
unfolding the wheels in time, or rather space. Architec-
tural variants can be obtained by changing the size of the
input windows, the size of the window of hidden states
considered to determine the output, the number of hidden
layers, the number of hidden units in each layer and so
forth. The following discussion uses several notations:

Ct � size of semi-window of context states considered by
the output network

NFB � number of output units in the left (forward) and
right (backward) context networks (wheels)

NHO� number of hidden units in the output network
NHC � number of hidden units in the context networks

The BRNN networks are trained by back-propagation on
the relative entropy error between the output and target
probability distributions. In a typical case, we use a hybrid
between online and batch training, with 300 batch blocks
(2–3 proteins each) per training set. Thus, weights are
updated 300 times per epoch after each block. The learning
rate per block is initially set at about 2.7 
 10�4, corre-
sponding to the number of blocks divided by (10) times the
number of residues (0.1 
 300/110,000), and is progres-
sively decreased. The training set is also shuffled at each
epoch, so that the error is not decreasing monotonically.
There is no momentum term or weight decay. When the
error does not decrease for 50 consecutive epochs, the
learning rate is divided by 2, and training is restarted from

the lowest error model. Training stops after 8 or more
reductions, corresponding to a learning rate that is 256
times smaller than the initial one, which usually happens
after 1,500–2,500 epochs.

BRNNs have been used for secondary structure predic-
tion and to develop the SSpro web server [http://promoter.
ics.uci.edu/BRNN-PRED/]. They have also been used for
the prediction of amino acid partners in 	-sheets.42 In ref.
35, evidence is provided that these architectures extend
the range over which information can be effectively cap-
tured with respect to feed-forward neural networks, up to
an effective window size of about 30 amino acids in the
case of secondary structure prediction.

RESULTS AND DISCUSSION
Correlations

We used several different encoding schemes to compute
correlations between different structural features:

1. Real numbers (i.e., relative accessibility, and the num-
ber of contacts for each cutoff).

2. Two states (1 and 0) for each descriptor; for instance,
a. 1 if number of contacts is greater than average
b. 0 otherwise

or
c. 1 if relative accessibility is greater than 16%
d. 0 otherwise

3. Three states (�1 0 1) for each descriptor; for instance,
a. 1 if contact is greater than average plus 1
b. 1 if contact smaller than average minus 1
c. 0 otherwise

or
d. 1 if relative accessibility �50%
e. 1 if relative accessibility �9%
f. 0 otherwise

4. Secondary structure
a. 1 if residue in H, 0 otherwise (H)
b. 1 if residue in E, 0 otherwise (E)
c. 1 if residue in H, �1 if residue in E, 0 otherwise (HE)

The correlations between the contact numbers in the four
different radius categories are shown in Table V, together
with the correlations between contact numbers and relative
solvent accessibility. As expected, correlations between con-
tact numbers are high, especially between 8, 10, and 12 Å
categories, while the 6-Å category is less correlated to the
others. The correlation between the 6 Å and 12 Å numbers is
only 0.46. Likewise, correlations between contact numbers
and accessibility exist but are negative and far from perfect.
They tend to decrease with smaller radius values: the
correlation is �0.71 at 12 Å, but only �0.52 at 6 Å.

Similar results are obtained with two- and three-state
correlation values (not shown). These results confirm that
the 6.0-Å coordination cutoff captures a different picture of
the local environment with respect to all other cutoffs. This
suggests that the behavior at 6 Å is biased by the sequence
neighboring contacts (helix or turns), while larger cutoffs
also involve contacts with residues that are linearly dis-
tant along the primary sequence (e.g., 	-structures).

Fig. 3. Solvent accessibility distribution.
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This hypothesis is supported by the correlations be-
tween accessibility or contact number and secondary struc-
ture, as reported in Table VI. Overall these correlations
are quite weak, but the correlation between residue con-
tact number and helical structure at 6 Å (0.42) is higher
compared with all other correlations. In contrast, residue

contact number within the 8–12 Å range is far more corre-
lated with extended (E) structures than helical structures.
This provides further evidence that larger cutoffs are more
suitable to capture contacts associated with large sequence
separations. Note also that overall the correlations decrease
when going from real-valued to two-state encoding. This
indicates that even though a two-state (or three-state) classi-
fication is quite useful in real applications, the threshold
definitions are, of course, somewhat arbitrary.

Prediction of Coordination Number

Preliminary tests were conducted with a number of
different BRNN architectures. We finally focused on seven
BRNNs with the same structure as those used in the early

TABLE IV. Numbers of Amino Acids in Each Accessibility Class for All 20 Thresholds, for Each of the Three Test
Sets, and for the Total Set

Threshold Set0-cl0 Set0-cl1 Set1-cl0 Set1-cl1 Set2-cl0 Set2-cl1 All-cl0 All-cl1

0 7935 43677 7648 42186 8367 43342 23950 129205
5 14169 37443 13486 36348 14906 36803 42561 110594

10 17843 33769 16925 32909 18537 33172 53305 99850
15 20996 30616 19882 29952 21586 30123 62464 90691
20 23814 27798 22587 27247 24389 27320 70790 82365
25 26450 25162 25093 24741 26987 24722 78530 74625
30 29072 22540 27701 22133 29685 22024 86458 66697
35 31652 19960 30100 19734 32084 19625 93836 59319
40 34155 17457 32502 17332 34544 17165 101201 51954
45 36565 15047 34860 14974 36909 14800 108334 44821
50 38958 12654 37200 12634 39199 12510 115357 37798
55 41176 10436 39455 10379 41338 10371 121969 31186
60 43188 8424 41461 8373 43357 8352 128006 25149
65 44918 6694 43204 6630 45070 6639 133192 19963
70 46442 5170 44672 5162 46587 5122 137701 15454
75 47751 3861 45951 3883 47888 3821 141590 11565
80 48900 2712 47084 2750 49076 2633 145060 8095
85 49729 1883 47933 1901 49909 1800 147571 5584
90 50408 1204 48562 1272 50528 1181 149498 3657
95 50848 764 48992 842 50949 760 150789 2366

Fig. 4. BRNN architecture with a left (forward) and right (backward)
context associated with two recurrent networks (wheels).

TABLE V. Correlations Between Contact Numbers for
Different Radius Values and Between Contact Numbers

and Relative Solvent Accessibility

6 Å 8 Å 10 Å 12 Å �0.52

6 Å 1.0 0.63 0.53 0.46 �0.52
8 Å 1.0 0.86 0.79 �0.70
10 Å 1.0 0.92 �0.72
12 Å 1.0 �0.71
ACC 1.0

TABLE VI. Simple, Two-State (2), and Three-State (3)
Correlations Between Number of Contacts for Different

Radius Values and Relative Accessibility With Secondary
Structure Classes H, E, and HE*

H E HE

ACC �0.10 �0.24 0.07
ACC (2) �0.07 �0.20 0.07
ACC (3) �0.08 �0.24 0.08
6 Å 0.42 0.07 0.23
6 Å (2) 0.40 0.01 0.25
6 Å (3) 0.32 0.02 0.20
8 Å 0.06 0.33 �0.15
8 Å (2) 0.05 0.24 �0.10
8 Å (3) 0.04 0.29 �0.14
10 Å 0.04 0.30 �0.14
10 Å(2) 0.02 0.24 �0.12
10 Å (3) 0.02 0.26 �0.13
12 AÅ 0.05 0.32 �0.15
12 Å(2) 0.05 0.24 �0.11
12 Å (3) 0.05 0.25 �0.11

*See text for details.

148 G. POLLASTRI ET AL.



version of the SSpro software35 for protein secondary
structure prediction. The basic parameters of each architec-
ture are given in Table VII. The number of parameters in
each architecture ranges within 1,959–5,430. We used a
network of 16 Sun Microsystems UltraSparc workstations
for training and testing, roughly equivalent to 2 years of a
single CPU, excluding the preliminary experiments. The
seven architectures are combined by simple averaging of
the outputs into an ensemble predictor. For a given radius
category, each ensemble is the average of 21 predictors (7
networks 
 3 cross-validation subsets).

Several indices can be used to score the efficiency41 of
the algorithm. Here, we use Q2, the number of correctly
predicted residues divided by the total number of residues,
and the Matthews’ correlation coefficient. The results of
threefold cross-validation, corresponding to 3 
 4 
 7 � 84
tests, for each one of the 7 BRNNs and for the ensemble,
are summarized in Table VIII for the test sets.

Overall, compact models tend to show better perfor-
mance. Larger models perform worse because they overfit

the training set. The effect of overfitting is considerable in
the 6-Å and 8-Å categories, moderate for 10 Å and 12 Å.
Although large models sometimes have significantly poorer
performance, they still prove useful when combined in an
ensemble. In each radius category, the ensemble repre-
sents a sizeable improvement over each individual architec-
ture and performs considerably better than the simple
baseline predictor that always assigns a residue to its most
abundant class independent of its environment.16 The
gains over the baseline predictor range from 16.0% for the
6-Å ensemble to 21.3% for the 12-Å ensemble (Tables X
and XI). Note that the error bar on the performance
estimates at the level of single amino acids is 0.11%. The
best previously known predictor,15 trained and tested only
on a 6.5-Å radius data set, achieved a performance of 69%,
12% better than the corresponding baseline predictor. In
the 6-Å category, closest to the one used in ref. 15, the
ensemble of BRNNs trained using PSI-BLAST profiles
achieves a Q2 of 73.02%, a gain of more than 4%. At 12 Å,
the ensemble of BRNNs achieves a performance of 73.93%
correct prediction, with a correlation coefficient of 0.48.
The ensemble of BRNNs trained on BLAST profiles show
slightly poorer performances. Table IX shows how the
PSI-BLAST profiles are responsible for Q2 gains of 0.5–
0.9%. The error bar on the performance estimates at the
level of single amino acids is 0.11%.

At least two reasons should be considered to explain
performance differences across the four radius categories.

TABLE VII. Total Number of Weights and Size Parameters
of the Seven BRNN Models*

Model No. Weights Cta NFBb NHOc NHCd

0 2241 3 8 11 9
1 1959 2 9 11 8
2 3009 3 12 11 9
3 2615 3 12 9 9
4 4232 3 15 12 13
5 4896 3 17 12 15
6 5430 3 17 14 15
aSize of semi-window of context states considered by the output
network.
bNumber of output units in the left and right context networks.
cNumber of hidden units in the output network.
dNumber of hidden units in the context networks.

TABLE VIII. Percentage of Threefold Cross-validation
Results Obtained With Several BRNNs and the

Corresponding Ensemble on the Test Set, for PSI-BLAST-
Based Input Profiles*

Model 6 Å 8 Å 10 Å 12 Å

0 71.59 69.29 71.04 73.00
1 72.03 69.45 70.96 72.42
2 71.04 68.91 70.58 72.71
3 71.39 69.28 70.84 72.68
4 69.99 67.80 69.79 72.54
5 69.77 67.72 69.54 71.93
6 69.95 67.49 70.16 71.69

Ens 73.02 70.57 72.00 73.93
Comb 73.24 70.95 72.13 74.09
Filter 73.13 70.56 72.02 73.92

*Performance results expressed in percentages of correct prediction
(Q2).
aEnsemble of models in a given radius category.
bCombination of four ensembles associated with different radius
categories.
cPlain filter applied to four ensembles associated with different radius
categories.

TABLE IX. Threefold Cross-validation Results Obtained
With the Four Ensembles*

6 Å 8 Å 10 Å 12 Å

Q2a PSI 73.02 70.57 72.00 73.93
BLAST 72.54 70.09 71.20 73.03
Diff 0.48 0.48 0.80 0.90

Corrb PSI 0.462 0.410 0.440 0.478
BLAST 0.452 0.400 0.424 0.460
Diff 0.010 0.010 0.016 0.017

*Gains of the PSI-BLAST-based ensembles over the BLAST-based
ensembles.
aPercentage of correctly assigned residues.
bMatthews’ correlation coefficients.
cPSI-BLAST-based profiles.
dBLAST-based profiles.
eDifference PSI-BLAST.

TABLE X. Comparison With Baseline Predictor*

Q2a 6 Å 8 Å 10 Å 12 Å

Ensb 73.02 70.57 72.00 73.93
Combc 73.24 70.95 72.13 74.09
Based 57.01 54.11 52.86 52.66
Diffe 16.23 16.84 19.27 21.43

*PSI-BLAST-based profiles.
aPercentage measure.
bEnsemble of models in a given radius category.
cCombination of ensembles across categories.
dBaseline predictor that selects the largest class for each amino acid.
eDifference in Q2 between Comb and Base.
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First, the performance of the baseline predictors decreases
with radius size. This particularly affects the 6-Å predic-
tor, whose base level is 3% higher than the others. Second,
as the radius is increased, the total length of the chain
becomes increasingly relevant. The average number of
contacts in the 12-Å data set is comparable to the length of
short proteins, making it less likely or even impossible
sometimes to have residues belonging to class 1. For
example, isoleucine requires 33 contacts to be classified as
1, which is, of course, impossible in proteins shorter than
34 residues, and unlikely for proteins that are just slightly
longer.

It is natural to wonder whether performance could be
further improved by combining predictors across the four
radius categories. Thus, we can combine the previous
ensembles using a small BRNN (a small feed-forward
neural network gives similar results) with parameters
Ct � 2, NFB � 3, NHO � 4, and NHC � 3. To avoid
retraining on the same training set, we perform a twofold
cross-validation on each of the three subsets of the previ-
ous cross-validation. The results (Comb) are reported in
Tables VIII and X. Each number is the average of six
different values, since each of the three subsets of the
previous cross-validation experiment is split into two and
the two resulting subsets are used alternatively as test
and training sets in this experiment, yielding a total of 6 

4 � 24 numbers. The improvements obtained by pooling
different radius categories range from 0.13% for 10 Å to
0.38% for the 8-Å category.

To make sure that these improvements are attributable
to the combination of diverse information and not to a
filtering effect associated with the additional BRNN used
in the combination, we also test the same BRNN architec-
ture as a filter for each single-category predictor (Filter in
Table VIII). The latter simple output filtering approach
gives results that are extremely similar to the unfiltered
case, with differences in the �0.01 or �0.02 percentage
range, except for the 6-Å category, where a small improve-
ment of 0.11% is observed. Thus, the small but significant
improvements observed with Comb can be imputed to the
combination of different information associated with the
6-Å, 8-Å, 10-Å, and 12-Å categories.

Prediction of Relative Solvent Accessibility

As in the contact case, it is possible to define a baseline
statistical predictor that assigns an amino acid to the
largest class for the given amino acid.16 We do so in a
threefold cross-validation context; i.e., the largest class for
a given amino acid is determined on the training set and is
not always the largest on the test set. This cannot be

avoided, but it has very little or no impact. The results are
displayed in Table XII.

The threefold cross-validation was carried using the
same seven BRNN architectures used for the number of
contacts (Table VII). Results of the threefold cross-
validation for all models and thresholds (test sets), using
PSI-BLAST-based input profiles, are summarized in Table
XIII.

Performance of the ensemble on both training and test
sets is displayed in Figure 5, together with the baseline
prediction. For thresholds within the range of 15–30%
exposed, neither class covers more than 60% of the set, and
therefore the classification problem is more balanced,
hence harder. It is in this balanced region that the
ensemble outperforms the baseline predictor by more than
10%. For an exposure threshold of 25%, the two classes are
almost perfectly balanced. In this case, we achieve 77.2%
correct classification. In the balanced region, error bars
are again of the order of 0.1% at the single amino acid
level. The best improvement with respect to the baseline
prediction is 16.2%, achieved for an exposure threshold of
15%. As in the case of the coordination number, PSI-
BLAST profiles prove useful for the prediction of relative
solvent accessibility. Table XIV shows how 0.6–0.8% gains
over the BLAST-based ensemble are observed in the
15–30% threshold region.

The current ensemble outperforms other recently pub-
lished solvent accessibility approaches. With a threshold
of 20%, Li and Pan25 achieved a performance of 71.5%
using single sequences, claiming that multiple align ments
in this case are less useful than in secondary structure
prediction. Although there may be some truth to that
claim, we still find profiles useful. For the same threshold,

TABLE XI. Comparison With Baseline Predictor*

Corr 6 Å 8 Å 10 Å 12 Å

Ens 0.462 0.410 0.440 0.478
Comb 0.467 0.419 0.443 0.482
Base 0.195 0.119 0.063 0.051

*Same as Table X, but using correlation measure.

TABLE XII. Percentage Performance of Baseline
Accessibility Predictors for All Thresholds, Threefold

Cross-validation*

Threshold Base0 Base1 Base2 BaseAll

0 84.63 84.65 83.82 84.37
5 72.55 72.94 71.17 72.22

10 65.43 66.04 64.15 65.21
15 62.12 62.91 61.33 62.12
20 65.68 66.75 65.76 66.06
25 65.35 67.96 67.33 66.88
30 65.54 66.30 65.75 65.87
35 67.54 68.08 67.93 67.85
40 68.56 68.46 69.20 68.74
45 71.30 70.98 72.32 71.53
50 75.48 74.65 75.81 75.31
55 79.78 79.17 79.94 79.63
60 83.68 83.20 83.85 83.57
65 87.03 86.70 87.16 86.96
70 89.98 89.64 90.09 89.91
75 92.52 92.21 92.61 92.45
80 94.75 94.48 94.91 94.71
85 96.35 96.19 96.52 96.35
90 97.67 97.45 97.72 97.61
95 98.52 98.31 98.53 98.45

*BaseN, baseline results on the Nth test set; BaseAll, average of
baseline results.
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our PSI-BLAST-based ensemble achieves 77.5% correct
prediction. Another recent prediction server23 claims 70.7%
correct prediction at a 25% threshold, versus the 77.2% of
our ensemble for the same threshold. The less recent
PHDacc server17 claims 74% with a threshold of 16%. For
comparison, at a 15% threshold, the baseline method
performs the worst, while our system achieves 78.3%

accuracy. Closest to our performance is perhaps the sys-
tem described in ref. 26, which achieves 76.2% at 25%,
where we achieve 77.2%, 1% better. Thus, to the best of our
knowledge, this is the top performance achieved so far by
any method, although a completely fair comparison would
require comparing all methods on exactly the same data.
Such comparison may become possible in the near future

TABLE XIII. Threefold Cross-validation Results for Each of the Seven BRNN Models and for the
Ensemble, in the case of PSI-BLAST Profiles

Model 0 1 2 3 4 5 6 Ensa

0 86.12 86.08 86.18 86.22 86.14 86.21 86.12 86.49
5 80.63 80.59 80.68 80.74 80.59 80.98 80.57 81.20

10 78.62 78.66 78.72 78.71 78.60 78.88 78.46 79.26
15 77.51 77.61 77.65 77.53 77.41 77.76 77.33 78.34
20 76.80 76.83 76.85 76.80 76.72 77.04 76.52 77.49
25 76.47 76.49 76.53 76.57 76.27 76.64 76.23 77.18
30 76.29 76.30 76.32 76.33 76.11 76.58 76.03 77.01
35 76.27 76.35 76.34 76.35 76.24 76.63 76.17 77.03
40 76.80 76.86 76.78 76.83 76.71 77.01 76.70 77.53
45 77.85 77.84 77.83 77.83 77.77 78.04 77.75 78.44
50 79.62 79.55 79.58 79.62 79.54 79.72 79.53 80.10
55 82.09 81.93 82.05 82.14 82.07 82.07 82.10 81.92
60 84.88 84.81 84.87 84.90 84.86 84.91 84.79 84.42
65 87.71 87.65 87.69 87.73 87.68 87.70 87.72 87.80
70 90.40 90.40 90.39 90.43 90.38 90.42 90.34 90.45
75 92.80 92.82 92.81 92.82 92.77 92.83 92.77 92.85
80 94.97 94.99 94.98 94.98 94.95 94.98 94.97 95.02
85 96.52 96.52 96.52 96.52 96.51 96.50 96.50 96.27
90 97.69 97.66 97.66 97.65 97.69 97.65 97.67 97.66
95 98.46 98.46 98.46 98.46 98.46 98.45 98.45 98.45
aEnsemble of the 7 models.

Fig. 5. Ensemble solvent accessibility prediction. Baseline predictor (blue crosses). BLASTbased en-
semble (red circles), PSI-BLAST-based ensemble (magenta stars). There are 20 different thresholds.

PROTEIN STRUCTURE PREDICTION 151



through an automated web server similar to the EVA
server (http://cubic.bioc.columbia.edu/eva/).

Long-Range Effects

We believe our improvements are due to both an in-
crease in the size of the training sets and in the architec-
tures we have developed, in particular their ability to
capture long-range interactions that are beyond the reach
of conventional feed-forward neural networks, with their
relatively small and fixed input window sizes. In order to
test the capabilities of our models to capture long-range
information, we looked at the performance of a typical
BRNN architecture (in case 3) when fed with a sequence
where all inputs are replaced by 0 outside the range [t � 
,
t � 
], as in ref. 35. The experiment was repeated for
different values of 
 from 0 to 70, for both contact and
accessibility (Fig. 6). For contacts in the 6-, 8-, 10-, and
12-Å categories, 0.1 below optimal performance is achieved
for 
 � 20, 45, 62, and 75, corresponding to window sizes of
41, 91, 125, and 151 residues), respectively, in the 6-, 8-,
10-, and 12-Å categories. The signal of the protein termi-
nus is in fact propagated beyond 70 amino acids in the
12-Å system by the BRNN architectures. This signal
implicitly provides a sense of protein size during the
classification process.

For accessibility, only minor changes are observed be-
yond 
 � 30, i.e., a window size of 61 residues. For instance,
for 
 � 35 and an accessibility threshold of 25%, the
performance of the model trained with incomplete data
achieves a prediction only 0.1% below the performance of
the same model trained with complete data.

A reasonable interpretation of these results is that the
BRNN architectures can leverage information in a window

of �60–70 residues in both kinds of prediction. In the case
of contact prediction, however, the size of the protein is
particularly important as well, so the BRNNs learn how to
measure it by the distance to the N- and C-terminus.
Obviously, this effect is increasingly important with the
increase in the size of the sphere used to determine
contacts, i.e., the increase in the number of neighbors
needed to be above the average.

CONCLUSIONS

We have combined recursive neural network techniques
and profiles to improve the state-of-the-art prediction of
contact number and relative solvent accessibility predic-
tion. The predictors achieve performances within the
71–74% range for contact numbers, depending on radius,
and greater than 77% for accessibility in the most interest-
ing range. In both cases, we have found evidence that more
sensitive PSI-BLAST profiles provide a small but sizeable
improvement over BLAST profiles. We have also collected
contact and accessibility statistics and studied the effects
of contact radius and relative accessibility threshold on
prediction.

The predictors are implemented in the form of two
Internet servers, CON-pro for contact number and ACCpro
for relative solvent accessibility, accessible at http://
promoter.ics.uci.edu/BRNN-PRED/. For coordination num-
bers, predictions are returned for 6, 8, 10, and 12 Å. For
solvent accessibility, users can select the threshold, 25%
being the default value. Predictions are emailed back to
the users after a brief period, depending on server load.

ACCpro and CONpro are part of a broader suite of
programs aimed at predicting protein 3D structure via
contact map prediction, and contact map prediction via
prediction of structural features. Prediction of structural

TABLE XIV. Threefold Cross-validation Results for
Different Input Profiles, Compared With the Baseline

Predictor.

Basea BLASTb PSIc PSI�Base PSI�BLAST

0 84.37 86.20 86.49 2.12 0.29
5 72.22 80.71 81.20 8.98 0.50

10 65.21 78.55 79.26 14.05 0.71
15 62.12 77.51 78.34 16.22 0.82
20 66.06 76.85 77.49 11.42 0.64
25 66.88 76.59 77.18 10.30 0.59
30 65.87 76.36 77.01 11.15 0.65
35 67.85 76.58 77.03 9.18 0.45
40 68.74 77.03 77.53 8.79 0.50
45 71.53 78.10 78.44 6.00 0.24
50 75.31 79.96 80.10 4.79 0.15
55 79.63 81.84 81.92 2.28 0.08
60 83.57 84.37 84.42 0.84 0.05
65 86.96 87.76 87.80 0.83 0.04
70 89.91 90.43 90.45 0.54 0.01
75 92.45 92.84 92.85 0.40 0.01
80 94.71 94.99 95.02 0.30 0.03
85 96.35 96.27 96.27 �0.08 0.01
90 97.61 97.67 97.66 0.05 �0.01
95 98.45 98.46 98.45 0.00 0.00
aBaseline predictor.
bBLAST-based profiles.
cPSI-BLAST-based profiles.

Fig. 6. Distant information exploited by the BRNN, corresponding to
model 3 and to validation subset 1. The horizontal axis represents half the
window size, i.e., the distance 
 from a given position beyond which all
entries are set to null values. The vertical axis represents the percentage
of correct prediction. Left plot represents contact predictions at 6 Å (dotted
line/balls), 8Å (solid line/x), 10 Å (dash-dot line/stars), and 12 Å (dashed
line/�). Right plot represents accessibility predictions with thresholds 0
(dotted line/balls), 25 (solid line/x), and 50 (dash-dot line/stars).
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features, such as accessibility, can also be used as a filter
for other tasks, for instance the study of contact sites
involved in protein–protein interactions. Although perfect
prediction of structural features should not be expected for
a variety of reasons, including the fact that some proteins
do not fold spontaneously, it is encouraging to see perfor-
mance in this area improve year after year as a result of
data expansion and algorithmic improvements. The perfor-
mance levels now achieved by these methods, coupled with
their speed, allows one to use them to sift through large
sets of proteins and, for instance, considerably narrow
down the number of targets that need to be tested by much
more time-consuming computer or experimental methods.
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