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ABSTRACT Secondary structure predictions
are increasingly becoming the workhorse for sev-
eral methods aiming at predicting protein structure
and function. Here we use ensembles of bidirec-
tional recurrent neural network architectures, PSI-
BLAST-derived profiles, and a large nonredundant
training set to derive two new predictors: (a) the
second version of the SSpro program for secondary
structure classification into three categories and (b)
the first version of the SSpro8 program for second-
ary structure classification into the eight classes
produced by the DSSP program. We describe the
results of three different test sets on which SSpro
achieved a sustained performance of about 78%
correct prediction. We report confusion matrices,
compare PSI-BLAST to BLAST-derived profiles, and
assess the corresponding performance improve-
ments. SSpro and SSpro8 are implemented as web
servers, available together with other structural
feature predictors at: http://promoter.ics.uci.edu/
BRNN-PRED/. Proteins 2002;47:228–235.
© 2002 Wiley-Liss, Inc.
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INTRODUCTION

Secondary structure predictions are increasingly becom-
ing the workhorse for several methods aiming at predict-
ing protein structure and function, especially on a genomic
scale.1–5 Several threading techniques aiming at the iden-
tification of structural similarities between proteins with
different sequences are based on predictions of secondary
structure.6,7 Predicting contact maps from primary se-
quence, secondary structure, and other structural features
has also emerged as a key possible strategy for predicting
protein structure.8–10

Methods predicting protein secondary structure have
improved substantially in the 1990s through the use of
machine learning methods and evolutionary information
taken from the divergence of proteins in the same struc-
tural family.11–17 In recent years, increases in the avail-
able training data and progress in algorithmic approaches
have boosted prediction accuracy to about 76% of all

residues predicted correctly in one of the three states:
helix, strand, and “other.”10,18 On the algorithmic front,
improvements of various kinds have resulted mostly from
combining predictors, from using more sensitive methods
for deriving evolutionary profiles, and from developing
more flexible machine learning architectures.

It is well known that combining predictors usually
improves prediction accuracy. Current methods for predict-
ing secondary structure typically combine multiple neural
networks, sometimes several hundreds of them,19 trained
more or less independently. Combination of different
systems rather than networks has also been used.20 At the
alignment level, the ability to produce profiles that include
increasingly remote homologs using PSI-BLAST15 has
also contributed to performance improvement. Divergent
evolutionary profiles contain not only enough information
to substantially improve prediction accuracy but even to
correctly predict long stretches of identical residues ob-
served in alternative secondary structure states depend-
ing on nonlocal conditions.21–23 An example is a method
automatically identifying structural switches, and thus
finding a remarkable connection between predicted second-
ary structure and aspects of function.22,23 Finally, at the
algorithmic level, new bidirectional recurrent neural net-
work architectures were introduced in Ref. 14 in combina-
tion with BLAST profiles to produce a first-generation
secondary structure predictor SSpro 1.0.

Here we develop the second version, SSpro 2.0, by using
an ensemble of bidirectional recurrent neural networks
and PSI-BLAST profiles. For the purpose of comparison,
we use the same training set as SSpro 1.0, but with larger
validation sets that have become available since the first
version. We show improved performance, to about 78%
correct prediction under stringent conditions. Secondary
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structure classification for resolved structures is typically
obtained by collapsing the eight-class output of the the
DSSP program24 into the standard three classes. Because
useful information may be present in the eight classes, we
also develop SSpro8, a secondary structure predictor into
eight classes.

MATERIALS AND METHODS
Data: Training and Testing

The assignment of the SS categories to the experimen-
tally determined three-dimensional (3D) structure is non-
trivial and typically performed by the widely used DSSP
program.24 DSSP works by assigning potential backbone
hydrogen bonds (based on the 3D coordinates of the
backbone atoms) and subsequently by identifying repeti-
tive bonding patterns.

The DSSP program classifies each residue into eight
classes (H � alpha helix; B � residue in isolated beta-
bridge; E � extended strand, participates in beta ladder;
G � 3-helix [3/10 helix]; I � 5 helix [pi helix]; T � hydrogen
bonded turn; S � bend; and “.”). These are typically
collapsed into the three standard classes associated with
helices, �-strand, and coils. In the CASP experiments,1,10,25

� contains H and G, � contains E and B, and � contains
everything else. This assignment is known to be somewhat
“harder” to predict than the other ones used in the
literature where, for instance, � is formed by DSSP class
H, � by E, and � by everything else (including DSSP
classes G, S, T, B, I, and “.”). Other assignments used in
the literature include,26 where � contains DSSP classes H,
G, and I. A study of the effect of various assignments on
prediction performance can be found in Ref. 20. It is clear,
however, that it may also be of interest to build a finer-
grained predictor for the eight classes produced by DSSP.
Because some classes are fairly rare, lack of data may have
been an obstacle in the past. But with the steady stream of
new structures deposited in the PDB27 every week, the
time may have come to revisit this issue.

Four main data sets are used to develop and test the
approach: a training set (TRAIN) and three test sets
(R126, EVA, and CASP4) to assess algorithmic perfor-

mance in the most objective way. The distribution of the
eight and three classes in these sets are summarized in
Table I.

TRAIN

To ensure fair comparison with SSpro 1.0, we use the
same training test, originally developed at the end of 1999.
We constructed a data set containing all proteins in PDB
which are (a) at least 30 amino acids long, (b) have no
chain breaks (defined as neighboring amino acids in the
sequence having C�-distances exceeding 4.0 Å), (c) produce
a DSSP output, and (d) are obtained by X-ray diffraction
methods with a resolution of at least 2.5 Å. Internal
homology is reduced by using an all-against-all alignment
approach,28 keeping the PDB sequences with the best
resolution. A 50% threshold curve is used for homology
reduction. Furthermore, the proteins in the set have �25%
identity with the sequences in the set R126. The resulting
training set consists of 1180 sequences corresponding to
282,303 amino acids.

R126

As a first independent test set, we use the original set of
126 sequences of Rost and Sander, currently correspond-
ing to a total of 23,363 amino acid positions (this number
has varied slightly over the years because of changes and
corrections in the PDB).

EVA

A novel test set is provided by all the sequences avail-
able from the real-time evaluation experiment EVA (http://
cubic.bioc.columbia.edu/eva/), which compares a number
of prediction servers on a regular basis by using the
sequences deposited in the PDB every week. In particular,
we use the set labeled “common3” published on 3/3/2001,
the largest EVA data set on which SSpro 1.0 had been
tested together with the other main servers at that date.
The set consists of 223 proteins with a total of 47,370
residues and contains sequences with no homology to
proteins previously stored in PDB. This set was uploaded
in PDB between 3/2000 and 3/2001; thus, it has no

TABLE I. Eight- and Three-Class Assignment Statistics for the Four Sets Adopted†

3class 8class TRAIN R126 EVA CASP4

H 91911 32.56 6573 28.13 16421 34.67 — —
G 11173 3.96 862 3.69 1751 3.70 — —
I 67 0.02 5 0.02 8 0.02 — —

H 103151 36.54 7440 31.85 18180 38.38 3600 39.79
E 59302 21.01 5068 21.69 8940 18.87 — —
B 3634 1.29 353 1.51 489 1.03 — —

E 62936 22.29 5421 23.20 9429 19.91 2048 22.64
S 25036 8.87 2539 10.87 4536 9.58 — —
T 33452 11.85 2718 11.63 5581 11.78 — —
. 57728 20.45 5245 22.45 9644 20.36 — —

C 116216 41.17 10502 44.95 19769 41.73 3399 37.57
All 282303 100.00 23363 100.00 47370 100.00 9047 100.00
†For each set, the first column gives the total number of residues and the second the corresponding percentages. Three-class: H �
helix; E � strand; and C � coil. Eight-class: H � alpha helix; B � residue in isolated �-bridge; E � extended strand, participates in
�-ladder; G � 3-helix (3/10 helix); I � 5 helix (pi helix); T � hydrogen bonded turn; S � bend; and “.”)
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homology to the TRAIN set extracted from PDB in Septem-
ber 1999.

CASP4

The last novel test set is provided by the 40 CASP4
sequences available at http://predictioncenter.llnl.gov/
casp4/ and corresponding to 9047 residues. Some of the
sequences show homology to PDB structures. In this case
we could not obtain the PDB file of three of the proteins
(T91, T92, T93), hence were unable to run DSSP on them
and did not use this set for testing classification into eight
classes. The secondary structure assignment into three
classes for this set was downloaded directly from the
CASP4 web site.

Profiles

To improve prediction, we use both BLAST and PSI-
BLAST input profiles. Using profiles at the input level
generally has been shown to yield better results than using
profiles at the output level.14

BLAST

Input profiles for SSpro 1.0 were constructed primarily
by running the BLAST program29 against the NR (nonre-
dundant) database,27,35 with standard default parameters
(E � 10.0, BLOSUM62 matrix). The version used was
available online in October 1999 and contained approxi-
mately 420,000 protein sequences. For redundancy reduc-
tion, instead of applying a hard threshold that requires an
arbitrary cutoff choice, we used a continuous weighting
scheme. In this scheme, the weight of a sequence measures
how different the sequence is from the profile in terms of
the Kullback-Leibler divergence.17 More specifically, for
any given sequence, the weight is the sum over all columns
in the profile of the Kullback-Leibler divergence between
the delta distribution associated with the composition of
the sequence in the column and the corresponding profile
distribution. This is also a measure of the Shannon
information in the sequence, given the current profile.
Formally, the weight of sequence s is

W�s� � � �
c

log P�s�c�	 � � log P�s	 (1)

where P[s(c)] is the probability according to the profile of
the letter s has in column c. Highly redundant sequences
have higher probabilities and, therefore, are assigned a
lower weight. In summary, every sequence in a given
alignment is assigned a weight proportional to the informa-
tion the sequence carries with respect to the unweighted
profile. A weighted profile matrix is then recompiled and
used as input to the prediction algorithm (see also Ref. 14).

PSI-BLAST

Here we derive new profiles by aligning all proteins
against the NR database using PSI-BLAST31 with the
following four-step protocol.32 First, we filter and remove
all database sequences with COILS to mark coiled-coil
regions33 and SEG to mark regions of low complexity.34

Second, we align the query protein against this filtered

database with an E-value threshold for the iteration of
10
10 (PSI-BLAST “h” threshold) and a final threshold of
E � 10
3 to accept hits. The number of iterations is
restricted to three to avoid drift.15,32 Third, we align the
query against the unfiltered NR database by using the
previously found, position-specific profile. Finally, we use
the same weighting scheme as in the case of BLAST
profiles to balance the profile and remove redundancy.

Recurrent Neural Network Architectures

In Ref. 14, BRNNs (Bidirectional Recurrent Neural
Networks) were proposed as a class of recurrent neural
network architectures that can address some of the limita-
tions of simple feed-forward networks associated with
small fixed-length input windows. A typical BRNN archi-
tecture is represented in Figure 1. In this architecture, the
output decision or classification is determined by three
components. First, there is a central component associated
with the local window at the location t of the current
prediction, as in standard feed-forward neural networks
for secondary structure prediction. The main difference
between the BRNN and the standard approach is the
contribution of the left and right “contexts.” These are
produced by two similar recurrent networks which, intu-
itively, can be thought of in terms of two “wheels” being
rolled along the protein chain, from the N- and the
C-terminus all the way to the point of prediction.

Architectural variants can be obtained by changing the
size of the input windows, the size of the window of hidden
states used to determine the output, the number of hidden
layers, the number of hidden units in each layer, and so
forth. As in standard secondary structure and other pro-
tein prediction architectures, we use sparse encoding for
the 20 amino acids.

In what follows, we use the following notation:

Ct � size of semiwindow of context states considered by
the output network

Fig. 1. A BRNN architecture with a left (forward) and right (backward)
context, Ft and Bt, associated with two recurrent networks (wheels). The
output layer Ot has three normalized exponential units associated with
membership in each one of the three secondary structure classes for the
current residue at position t. The functions �, �, and � are implemented by
feed-forward neural networks.

230 G. POLLASTRI ET AL.



NFB � number of output units in the left (forward) and
right (backward) context networks (wheels)

NHO � number of hidden units in the output network
NHC � number of hidden units in the context networks

In the three (resp. 8) class-prediction applications consid-
ered here, there are three (resp. 8) normalized exponential
output units that enable us to estimate the class member-
ship probability for the residue being considered. The
output error is the relative entropy between the output
and target probability distributions.17 All the weights of
the BRNN architecture, including the weights in the
recurrent wheels, can be trained from examples in a
supervised fashion by using a generalized form of gradient
descent or backpropagation through time, or rather space,
because of the forward and backward nature of the chains.

BRNNs were used to develop the first version of the
SSpro predictor.14 They have also been used for the
prediction of amino acid partners in �-sheets,35 contact
numbers,9 and relative solvent accessibility. In Ref. 14,
evidence is provided that, in the case of secondary struc-
ture prediction, these architectures extend the range over
which information can be effectively integrated with re-
spect to a feed-forward neural network, up to an effective
window size of about 30 amino acids.

Experiments

In terms of architectures, both the three- and eight-class
predictors use the same ensemble of 11 BRNNs, as in the
online version of SSpro 1.0. Parameters of the 11 networks
are given in Table II. The total number of parameters
varies over one order of magnitude from 1,899 to 18,107.
Here we train SSpro 2.0 using PSI-BLAST profiles, SSpro8
1.0 using BLAST profiles, and SSpro8 2.0 using PSI-
BLAST profiles. SSpro predicts the CASP three-class
assignment, whereas SSpro8 predicts the eight classes
that are produced by the DSSP program.

The training strategy adopted is the same for all the
systems and derives from the preliminary studies reported

in Ref. 14. In a typical case, we use a hybrid learning
approach that combines online and batch training, with
430 batch blocks (two or three proteins each) per training
set. Thus, weights are updated 430 times per epoch after
each block. The learning rate per block is initially set at
about 1.5 
 10
4, corresponding to the number of blocks
divided by 10 times the number of residues (0.1 
 430/
280000) and is progressively decreased. The training set is
also shuffled at each epoch. When the error does not
decrease for 50 consecutive epochs, the learning rate is
divided by 2, and training is restarted from the lowest
error model. Training stops after eight or more reductions,
corresponding to a learning rate that is 256 times smaller
than the initial one, which usually happens after 1500–
2500 epochs.

Several indices can be used to score the efficiency of the
algorithm.36 Here we use Q3 or Q8, the number of correctly
predicted residues divided by the total number of residues,
as well as the corresponding per-class version Qclass
(percentage of residues in a given structural class that are
correctly predicted) and the Matthew’s correlation coeffi-
cient.

RESULTS AND DISCUSSION
SSpro

Performance for each individual model and for the
ensemble average is given in Table III for the TRAIN and
R126 sets. In all cases, PSI-BLAST profiles provide a Q3
improvement of at least 1.5%, and often more. On the EVA
set, SSpro 2.0 achieves 77.7%, better than all the other
evaluated systems. Incidentally, training on BLAST pro-
files and testing on PSI-BLAST profiles also leads to some
performance improvement, although not as much.

In Table IV, we give the performance of SSpro 1.0 and
SSpro 2.0 on the three test sets measured by Q3 and the
percentage per class (Qclass). Again, the PSI-BLAST
profiles lead to significant improvement in all categories.
In some cases (E in EVA and CASP4), the improvement

TABLE II. Parameters and Total Weights
of the 11 BRNN Models†

Model Ct NFB NHO NHC Weights

0 3 8 11 9 2181
1 2 9 11 8 1899
2 3 12 11 9 2949
3 3 12 9 9 2565
4 3 15 12 13 4167
5 3 17 12 15 4831
6 3 17 14 15 5355
7 3 15 14 15 4839
8 4 15 14 15 5679
9 4 25 30 27 18107

10 3 25 30 27 15107
†Ct � size of semiwindow of context states; NFB � number of output
units in the forward and backward context networks; NHO � number
of hidden units in the output network; NHC � number of hidden units
in the context networks.

TABLE III. Performances of All the 11 Models and
the Ensemble, for SSpro 1.0 and SSpro 2.0, on the
R126 Test Set and on the Training Set Using the
Percentage Q3 of Correctly Classified Residues

Model

SSpro 1.0 SSpro 2.0

Q3 Q3train Q3 Q3train

0 74.91 77.24 76.85 78.27
1 74.82 76.93 76.53 78.36
2 75.20 78.03 76.62 79.02
3 74.98 77.62 76.35 78.94
4 75.15 79.02 76.30 80.39
5 74.54 79.80 75.90 80.79
6 74.50 78.93 76.08 80.87
7 74.80 78.66 76.61 80.91
8 74.57 78.55 76.32 80.91
9 74.40 81.00 74.84 85.21

10 73.37 83.26 75.16 84.21
Ensemble 76.62 81.01 78.13 83.02
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exceeds 3%. Similar results using Matthew’s correlation
coefficients are given in Table V.

SSpro 2.0 achieves Q3 of 78.13% on R126 and 77.67% on
EVA, which, to the best of our knowledge, at the time of
this writing is second to none. (The results reported on
EVA as of 3/3/01 at http://cubic.bioc.columbia.edu/eva/sec/
bup_common/2001_03_03/common1.html for the other
tested predictors are PROF1 76.8%, PSIpred 76.5%, JPRED
74.7%, PHDpsi 74.7%, and PHD 71.5%). The error margin
on the performance for single residues range from 0.19%
for the EVA set to 0.42% for the CASP4 set, so the second
decimal for Q3 is not particularly significant. The results
currently reported on the EVA web site correspond to
SSpro 1.0 only, because SSpro 2.0 came online in April
2001 and EVA does not offer an automated procedure to
evaluate a newly entered predictor using all sequences up
to the time of entry. Although SSpro 2.0 is derived after the
CASP4 experiment, it is trained by using the same train-
ing set as SSpro 1.0 before CASP4. SSpro achieves a Q3
performance of 80.65% on the CASP4 set, which is known
to contain sequences with a wide difficulty range.10 For
comparison, the predictor PSIPRED achieves 79.9% cor-
rect prediction per residue, computed by using the official
predictions reported at CASP4 for 39 sequences and
submitting the remaining sequence (T0106) directly to the

PSIPRED server. An overall performance of 80% also has
been reported in Ref. 19, but an easier mapping of the
eight DSSP classes into three is used rather than the one
used for the CASP experiments. With this easier assign-
ment, SSpro 2.0 achieves performances �80%.

Table VI provides the confusion matrices of SSpro 1.0
and SSpro 2.0 measured on the R126 test set. Perhaps not
surprisingly, �-strands continue to remain the most diffi-
cult class probably because of a number of factors includ-
ing the involvement of long-ranged interactions with re-
spect to the primary sequence and the fact that they are
underrepresented in the data (roughly 20% strands and
35% helices).

SSpro8

For the eight-class prediction, it is first worth noting
that class I is almost irrelevant because it represents

TABLE V. Performances of SSpro 1.0 and SSpro 2.0 on the
R126, EVA, and CASP4 Test Sets†

SSpro 1.0 SSpro 2.0

R126 H 0.732 0.752
E 0.598 0.634
C 0.571 0.59

EVA H 0.695 0.722
E 0.594 0.632
C 0.568 0.588

CASP4 H 0.749 0.788
E 0.609 0.674
C 0.599 0.634

†Matthews’ correlation coefficients.

TABLE VII. Performances of SSpro8 1.0 and SSpro8 2.0 on
the R126 and EVA Test Sets†

SSpro8 1.0 SSpro8 2.0

R126 H 89.21 89.93
G 6.38 8.70
I 0.00 0.00
E 76.85 78.77
B 0.00 0.00
S 6.58 7.48
T 43.34 45.44
. 57.79 61.33

Q8 60.74 62.58
EVA H 88.38 89.49

G 4.63 6.85
I 0.00 0.00
E 74.49 76.10
B 0.00 0.00
S 4.43 5.78
T 39.67 40.75
. 58.59 60.51

Q8 61.89 63.31
†Q8 percentage and Qclass percentage of observed residues.

TABLE IV. Performances of SSpro 1.0 and SSpro 2.0 on the
R126, EVA, and CASP4 Test Sets†

SSpro 1.0 SSpro 2.0

126 H 80.79 82.38
E 63.23 66.19
C 80.56 81.26

Q3 76.62 78.13
EVA H 80.76 82.48

E 62.50 65.56
C 78.05 79.03

Q3 76.00 77.67
CASP4 H 83.86 86.08

E 61.87 68.51
C 80.99 82.20

Q3 77.80 80.65
†Q3 and Qclass percentages.

TABLE VI. Confusion Matrices for SSpro 1.0 and SSpro 2.0
on the Set R126†

SSpro 1.0 SSpro 2.0

Hpred Epred Cpred Hpred Epred Cpred

Hobs 80.79 2.64 16.57 82.38 1.83 15.79
Eobs 4.37 63.23 32.40 3.30 66.19 30.51
Cobs 9.85 9.60 80.55 9.64 9.10 81.26

Hobs Eobs Cobs Hobs Eobs Cobs

Hpred 82.50 3.25 14.25 83.69 2.44 13.87
Epred 4.24 73.90 21.86 2.91 76.57 20.52
Cpred 10.74 15.27 73.99 10.31 14.49 75.20
†Xpred � structure X is predicted. Yobs � structure Y is observed.
Rows sum to 100%. The number in row Xpred and column Yobs
represents the percentage of times structure Y is observed, given that
structure X has been predicted.
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0.02% of cases. Class B is small (1–1.5%), and the number
of training examples is not yet large enough to yield any
reliable prediction. Class G is also relatively small (�4%),
but some generalization appears to be possible. The same
is true for class S, which represents �9% of cases. Each
one of the other four classes contains at least 8% of the
total residues.

The performances of SSpro8 1.0 and 2.0 are reported in
Tables VII and VIII. For both versions of SSpro8, no
residue is predicted as being in either class I or class B.
Residues observed in class I are predicted as being in class
H, and residues in class B are predicted somewhat evenly
as being in classes in “.” or E, as shown by the confusion
matrix in Table IX. Classes G and S are underpredicted.
Roughly 30% of the residues classified in G by DSSP are
classified as H by SSpro8, and 21% are classified as being
in a turn (T). When the system predicts G or S, however,
there is about a 40–50% chance it is correct, which is
considerably better than a random prediction. Although
class T represents only 11% of the residues, it tends to be
slightly overpredicted. Approximately 43–45% of the ob-
served turns are predicted correctly, and 40% of the
predicted turns are actual turns. More precisely, bends (S)
tend to be confused with turns (T). Of the observed bends,
�20% are predicted as turns (�10% as bends). If a T is
predicted, the probability of the actual residue being in
either a T or an S structure is approximately 65%. A class
obtained by merging turns and bends would be classified
by SSpro8 2.0 with a 65% correct percentage of predicted
residues. The overall performance shows a gain of 1.4–
1.8% with PSI-BLAST profiles, reaching the 62.6–63.3%
range. The error margins on the performance for single
residues range from 0.22% for the EVA set to 0.32% for the
R126 set.

Table VIII compares the two versions of SSpro8 on the
other two test sets by using Q8 and Qclass. The confusion
matrix of SSpro8 2.0 is reported in Table IX.

If we combine the predictions of SSpro8 using the CASP
assignment, the performance obtained is inferior to SSpro
by more than a percentage point. This is perhaps not too
surprising, because SSpro8 is trained for a different task.
Performance very close to SSpro (within 0.2%) can be
achieved by cascading SSpro8 with a small neural network
trained with threefold cross-validation on the test set.
Overall, prediction into eight classes does not seem to
improve prediction of secondary structure into three
classes. However, current results are encouraging, espe-
cially for turns, and are bound to improve as more data
becomes available.

CONCLUSION

We have developed two state-of-the-art predictors for
secondary structure in three and eight categories, using
ensembles of bidirectional recurrent neural networks and
PSI-BLAST profiles. We have assessed the gains attribut-
able to the use of PSI-BLAST profiles over BLAST profiles
and have implemented the programs in the form of two
web servers, SSpro and SSpro8, available over the Inter-
net at http://promoter.ics.uci.edu/BRNN-PRED/. Users can
enter primary amino acid sequences, and predictions are
e-mailed back to them after a short period of time,
depending on server load. SSpro and SSpro8 are also part
of a broader suite of programs aimed at predicting protein
3D structure via contact map prediction, and contact map
prediction via prediction of structural features, such
as secondary structure, relative solvent accessibility
(ACCpro), and contact numbers (CONpro).37

Improvements of a few percentage points are significant,
especially in the context of the Human Genome Project
and other genome sequencing projects as well as high-
throughput structural proteomics projects. It is encourag-
ing to witness gradual performance improvements year
after year, as a result of algorithmic improvements and
data growth. Perfect prediction cannot be expected for a
number of reasons, including (a) dynamic properties of
protein chains; (b) quaternary structures; (c) existence of
proteins that do not fold spontaneously; (d) errors and
variability in databases, as well as in DSSP program
output; and (e) effects of external variables, such as pH,
that currently are not taken into consideration. Thus,
some degree of prediction saturation is likely to emerge in
the coming years, although the exact level at which it will
occur remains unclear. For the time being, efforts toward
exhaustive prediction and exhaustive taxonomy of protein
folds should continue to advance in synergy.
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TABLE VIII. Performances of SSpro8 1.0 and SSpro8 2.0
on the R126 and EVA Test Sets†

SSpro8 1.0 SSpro8 2.0

R126 H 75.55 78.38
G 36.91 41.44
I — —
E 62.39 66.02
B — —
S 49.41 48.47
T 42.04 43.89
. 49.94 50.36

Q8 60.74 62.58
EVA H 76.06 77.11

G 33.61 38.46
I — —
E 61.67 64.70
B — —
S 38.58 44.33
T 42.92 43.70
. 48.83 49.91

Q8 61.89 63.31
†Q8 percentage and Qclass percentage of predicted residues (percent-
age of correctly classified X, given that X is predicted). Note that no
numbers are available for classes I and B because they are never
predicted.
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