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Abstract

We describe a general methodology for the design of large-scale recursive neural network architec-
tures (DAG-RNNSs) which comprises three fundamental steps: (1) representation of a given domain
using suitable directed acyclic graphs (DAGS) to connect visible and hidden node variables; (2)
parameterization of the relationship between each variable and its parent variables by feedforward
neural networks; and (3) application of weight-sharing within appropriate subsets of DAG connec-
tions to capture stationarity and control model complexity. Here we use these principles to derive
severalspecificclasses of DAG-RNN architectures based on lattices, trees, and other structured
graphs. These architectures can process a wide range of data structures with variable sizes and
dimensions. While the overall resulting models remain probabilistic, the internal deterministic dy-
namics allows efficient propagation of information, as well as training by gradient descent, in order
to tackle large-scale problems. These methods are used here to derive state-of-the-art predictors
for protein structural features such as secondary structure (1D) and both fine- and coarse-grained
contact maps (2D). Extensions, relationships to graphical models, and implications for the design
of neural architectures are briefly discussed. The protein prediction servers are available over the
Web at:www.igh.uci.edu/tools.htm

Keywords: recursive neural networks, recurrent neural networks, directed acyclic graphs, graphi-
cal models, lateral processing, protein structure, contact maps, Bayesian networks

1. Introduction

Recurrent and recursive artificial neural networks (RNNgve rich expressive power and deter-
ministic internal dynamics which provide a computationally attractive alternative to graphical mod-
els and probabilistic belief propagation. With a few exceptions, however, systematic design, train-
ing, and application of recursive neural architectures to real-life problems has remained somewhat
elusive. This paper describes several classes of RNN architectures for large-scale applications that
are derived using the DAG-RNN approach. The DAG-RNN approach comprises three basic steps:
(1) representation of a given domain using suitable directed acyclic graphs (DAGS) to connect visi-

1. There is a subtle but non-fundamental distinction between recurrent and recursive in this context. Recurrent has a
temporal connotation, whereas recursive has a more general spatial connotation that will become obvious with the
following examples.
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ble and hidden node variables; (2) parameterization of the relationship between each variable and its
parent variables by feedforward neural networks or, for that matter, any other class of parameterized
functions; and (3) application of weight-sharing within appropriate subsets of DAG connections to
capture stationarity and control model complexity. The absence of cycles ensures that the neural
networks can be unfolded in “space” so that back-propagation can be used for training. Although
this approach has not been applied systematically to many large-scale problems, by itself it is not
new and can be traced, in more or less obscure form, to a number of publications including Baldi
and Chauvin (1996), Bengio and Frasconi (1996), Sperduti and Starita (1997), Goller (1997), Le-
Cun et al. (1998), Frasconi et al. (1998). What is new here is the derivation of a nundpesocdic

classes of architectures that can process a wide range of data structures with variable sizes and di-
mensions together with their systematic application to protein structure prediction problems. The
results we describe expand and improve on those previously reported in Pollastri et al. (2003) as-
sociated with the contact map predictor that obtained results similar to the CORNET predictor of
Fariselli et al. (2001) during the CASP5 (Critical Assessment of Techniques for Protein Structure
Prediction) experimentitp://predictioncenter.linl.gov/casp5/Casp5.html ).

Background: Protein Structure Prediction

Predicting the 3D structure of protein chains from their primary sequence of amino acids is a fun-
damental open problem in computational molecular biology. Any approach to this problem must
deal with the basic fact that protein structures are invariant under translations and rotations. To
address this issue, we have proposed a machine learning pipeline for protein structure prediction
that decomposes the problem into three steps (Baldi and Pollastri, 2002) (Figure 1), including one
intermediary step which computes a topological representation of the protein that is invariant under
translations and rotations. More precisely the first step starts from the primary sequence, possibly
in conjunction with multiple alignments to leverage evolutionary information, and predicts several
structural features such as classification of amino acids into secondary structure classes (alpha he-
lices/beta strands/coils), or into relative exposure classes (e.g. surface/buried). The second step uses
the primary sequence and the structural features to predict a topological representation in terms
of contact/distance maps. The contact map is a 2D representation of neighborhood relationships
consisting of an adjacency matrix at some distance cutoff, typically in the range of e i

amino acid level. The distance map replaces the binary values with pairwise Euclidean distances.
Fine-grained contact/distance maps are derived at the amino acid, or at the even finer atomic level.
Coarse contact/distance maps can be derived by looking at secondary structure elements and, for
instance, their centers of gravity. Alternative topological representations can be obtained using local
angle coordinates. Finally, the third step in the pipeline predicts the actual 3D coordinates of the
atoms in the protein using the constraints provided by the previous steps, primarily from the 2D
contact maps, but also possibly other constraints provided by physical or statistical potentials.

Predictors for the first step based on recurrent neural networks have been described in Baldi and
Brunak (2001), Pollastri et al. (2001a,b). Methods to address the third step have been developed in
the NMR literature (Nilges et al., 1988a,b) and elsewhere (Vendruscolo et al., 1997) and typically
use ideas from distance geometry, molecular dynamics, and stochastic optimization to recover 3D
coordinates from contacts. These methods, however, will not be discussed here (see Yanover and
Weiss (2002) for an application of graphical models to the problem of placing side chains).
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The primary focus here is rather on the second step, the prediction of contact maps. Various al-
gorithms for the prediction of contacts (Shindyalov et al., 1994, Olmea and Valencia, 1997, Fariselli
and Casadio, 1999, 2000, Pollastri et al., 2001a), distances (Aszodi et al., 1995, Lund et al., 1997,
Gorodkin et al., 1999), and contact maps (Fariselli et al., 2001) have been developed, in particu-
lar using neural networks. For instance, the feed-forward-neural-network-based amino acid contact
map predictor CORNET has a reported 21% average precision (Fariselli et al., 2001) on off-diagonal
elements, derived with approximately a 50% recall performance (see also Lesk et al. (2001)). While
this result is encouraging and well above chance level by a factor greater than 6, it currently does
not yet provide a level of accuracy sufficient for reliable 3D structure prediction.

In the next section, we illustrate the DAG-RNN approach for the design of large-scale recursive
neural network architectures. We use the first step in our prediction pipeline to review the one-
dimensional version of the architectures, and the second step to introduce key generalizations for
the prediction of two-dimensional fine-grained and coarse-grained contact maps and to derive lattice
DAG-RNN architectures in any dimensi@h Sections 3 and 4 describe the data sets as well as other
implementation details that are important for the actual results but are not essential to grasp the
basic ideas. The performance results are presented in Section 5. The conclusion briefly addresses
the relationship to graphical models and the implications for protein structure prediction and the
design of neural architectures. Further architectural remarks and generalizations are presented in
the Appendix.

2. DAG-RNN Architectures

We begin with an example of one-dimensional DAG-RNN architecture for the prediction of protein
structural features.

2.1 One-Dimensional Case: Bidirectional RNNs (BRNNS)

A suitable DAG for the 1D case is described in Figure 2 and is associated with a set of input variables
li, a forwardH[ and backwardH® chain of hidden variables, and a %8t of output variables.

This is essentially the connectivity pattern of an input-output HMM (Bengio and Frasconi, 1996),
augmented with a backward chain of hidden states. The backward chain is of course optional and
used here to capture the spatial, rather than temporal, properties of biological sequences.

The relationship between the variables can be modeled using three types of feed-forward neural
networks to compute the output, forward, and backward variables respectively. One fairly general
form of weight sharing is to assume stationarity for the output, forward, and backward networks,
which finally leads to a 1D DAG-RNN architectures, previously named bidirectional RNN architec-
ture (BRNN), implemented using three neural netwd¥¢s N, andNg in the form

O = No(li,H,HE)
HF = Ne(li,H ) (1)
HiB = NB(IivHiB+1)

as depicted in Figure 3). In this form, the output depends on the local inputositioni, the

forward (upstream) hidden contexf € R" and the backward (downstream) hidden contéXte

R™, with usuallym=n. The boundary conditions fét7 andH® can be setto 0, i.d4f =HE. ;=0

whereN is the length of the sequence being processed. Alternatively these boundaries can also be
treated as a learnable parameter. Intuitively, we can thifkpofindNg in terms of two “wheels”
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Figure 1. Overall pipeline strategy for machine learning protein structures. Example of 1SCJ
(Subtilisin-Propeptide Complex) protein. The first stage predicts structural features in-
cluding secondary structure, contacts, and relative solvent accessibility. The second stage
predicts the topology of the protein, using the primary sequence and the structural fea-
tures. The coarse topology is represented as a cartoon providing the relative proximity of
secondary structure elements, such as alpha helices (circles) and beta-strands (triangles).
The high-resolution topology is represented by the contact map between the residues of
the protein. The final stage is the prediction of the actual 3D coordinates of all residues
and atoms in the structure.

that can be rolled along the sequence. For the prediction at positi@roll the wheels in opposite
directions starting from both ends and up to positionThen we combine the wheel outputs at
positioni together with the inpul; to compute the output predictiddy usingNo.

In protein secondary structure prediction, for instance, the oufpus computed by three
normalized-exponential units and correspond to the membership probability of the residue at po-
sitioni in each one of the three classes (alpha/beta/coil). In the most simple case, the Rt
represents a single amino acid with orthogonal encoding ki#th20. Larger input windows ex-
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Figure 2: DAG associated with input variables, output variables, and both forward and backward
chains of hidden variables.

00 0] |00 o] |00 O |

HE ' | HEs

Figure 3: A BRNN architecture with a left (forward) and right (backward) context associated with
two recurrent networks (wheels).

tending over several amino acids are also possible. While proteins have an orientation, in more

symmetric problems weight sharing between the forward and backward netvidiks (Ng) is

also possible. As usual, in regression tasks the performance of the model is typically assessed

using mean square error, whereas in classifications tasks, such as secondary structure prediction,

performance is typically assessed using relative entropy between estimated and target distributions.
All the weights of the BRNN architecture, including the weights in the recurrent wheels, can be

trained in a supervised fashion using a generalized form of gradient descent derived by unfolding
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the wheels in space. BRNN architectural variations are obtained by changing the size of the input
windows, the size of the window of hidden states that directly influences the output, the number
and size of the hidden layers in each network, and so forth. These BRNN architectures have been
used in the first stage of the prediction pipeline of Figure 1 giving rise to state-of-the-art predictors
for secondary structure, solvent accessibility, and coordination nhumber (Pollastri et al., 2001a,b)
available throughhttp:/iwww.igb.uci.edu/tools.htm

2.2 Two-Dimensional Case

If RNN architectures are to become a general purpose machine learning tool, there should be a
general subclass of architectures that can be used to process 2D objects and tackle the problem of
predicting contact maps. It turns out that there is a “canonical” 2D generalization of BRNNs that
is described in Figures 4 and 5. In its basic version, the corresponding DAG is organized into six
horizontal layers: one input plane, 4 hidden planes, and one output plane. Each plane dtntains
nodes arranged on the vertices of a square lattice. In each hidden plane, the edges are oriented
towards one of the four cardinal corners. For instance, in the NE plane all the edges are oriented
towards the North or the East. Thus in each vertical column there is an input vakigbteur
hidden variablesH/\F, HlNJW, H3Y, and H3F associated with the four cardinal corners, and one
output variableO; j with i =1,...,Nandj =1,...,N. Itis easy to check, and proven below, that
this directed graph has no dlrected cycles. The precise nature of the inputs for the contact map
prediction problem is described in Section 5.

By generalization of the 1D case, we can assume stationarity or translation invariance for the
output and the hidden variables. This results in a DAG-RNN architecture controlled by 5 neural
networks in the form

OI] NO(II]7H|NJW7HNE H|SJW7HSE)

i
o~ i e M)

HI% NNW(II 17H|+117H 1) (2)
|§W NSW(|I17H|+117HSW )
E NSE(" Jle 1j’ IJ+1)

In the NE plane, for instance, the boundary conditions are slelfj\‘fo: Ofori=0o0rj=0.
The activity vector associated with the hidden udff= depends on the local inpu, and the
activity vectors of the unitHNg , andH\=,. Activity in NE plane can be propagated row by
row, West to East, and South to North, or vice versa. These update schemes are easy to code,
however they are not the most continuous ones since they require a jump at the end of each row or
column. A more continuous update scheme is a “zig-zag” scheme that runs up and down successive
diagonal lines with SE-NW orientation. Such a scheme could be faster or smoother in particular
software/hardware implementations. Alternatively, it is also possible to update all units in parallel
in more-or-less random fashion until equilibrium is reached.

As for the 1D case, learning can proceed by gradient descent for recurrent networks. In practice
however, getting gradient descent learning procedures to work well in these recurrent architectures
requires some degree of experimentation with learning parameters for a variety of reasons ranging
from vanishing gradients to poor local minima. Additional issues that are problem-specific include
the competition/collaboration tradeoffs between the hidden DAGs and whether they play a symmet-
ric role or not. In the contact map prediction problem, for instance, the SW and NE planes play a
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Output Plane

N
u4 Hidden Planes

Input Plane

Figure 4. General layout of a DAG for processing two-dimensional objects such as contact maps,
with nodes regularly arranged in one input plane, one output plane, and four hidden
planes. In each plane, nodes are arranged on a square lattice. The hidden planes con-
tain directed edges associated with the square lattices. All the edges of the square lattice
in each hidden plane are oriented in the direction of one of the four possible cardinal
corners: NE, NW, SW, SE. Additional directed edges run vertically in column from the
input plane to each hidden plane, and from each hidden plane to the output plane.

special role because they are associated with the main diagonal corresponding to self-alignment and
proximity.

2.3 D-Dimensional Case

It should be clear now how to build a family of RNNSs to process inputs and outputs in any dimension
D. A 3D version for instance, has one input cube associated with input variahlegight hidden

cubes associated with hidden varlatj}q'? ( With 1 =1,...,8, and one output cube associated with
output variable; j x with i, j andk ranging from 1 td\l In each hidden cubic lattice, edges are
oriented towards one of the 8 corners. More generally, the versiBndimensions has2hidden
hypercubic lattices. In each hypercubic lattice, all connections are directed towards one of the
hypercorners of the corresponding hypercube.

In this class of DAG-RNN architectures, the number of hidden hyperplanes is exponential in
the dimensiorD. This is acceptable for small values Bf(eg. 1,2, and 3) covering many spatio-
temporal applications, but not tractable for high-dimensional spaces. The full complement of hy-
perplanes is the only architecture that allows a directed path to exist between any input vertex and
any output vertex. This requirement however may not be necessary in some applications so that a
subset of the hidden hyperplanes may be sufficient, depending on the application. For instance, in
the contact map prediction problem, if only two planes are used, it would be advantageous to use
planes associated with opposite cardinal corners of the main diagonal (e.g. SW and NE), rather than
some other combination (e.g. SW and NW or even the other diagonal NW and SE), since the main
diagonal correspond t@,i) contacts and self-alignment in each hidden plane.
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Figure 5: Details of connections within one column of Figure 4. The input variable is connected to
the four hidden variables, one for each hidden plane. The input variable and the hidden
variables are connected to the output variablgis the vector of inputs at positiafi, j ).

O; j is the corresponding output. Connections of each hidden unit to its lattice neighbors
within the same plane are also shown.

Many other architectural generalizations are possible, but these are deferred to the Appendix to
keep the focus here on contact map prediction. Before proceeding with the data and the simulations,
however,it is worth proving that the graphs obtained so far are indeed acyclic. To see this, note that
any directed cycle cannot not contain any input node (resp. output node) since these nodes are only
source (resp. sink) nodes, with only outgoing (resp. incoming) edges. Thus any directed cycle
would have to be confined to the hidden layer and since this layer consists of disjoint components,
it would have to be contained entirely in one of the components. These components have been
specifically designed as DAGs and therefore there cannot be any directed cycle.

3. Data

We now described the curated data sets used to train and test the fine- and coarse-grained contact
map predictors.
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3.1 Fine-Grained Contact Maps

Experiments on fine-grained contact maps are reported using three curated data sets SMALL,
LARGE, and XLARGE derived using well-established protocols.

SMALL and XLARGE: The training and testing data sets in the SMALL and XLARGE sets are
extracted from the Protein Data Bank (PDB) of solved structures using thedel@Bt list (Hobohm

et al., 1992) of February 2001, containing 1520 proteins. The list of structures and additional
information can be obtained from the following ftp sitg//ftp.embl-heidelberg.de/pub/

databases . To avoid biases, the set is redundancy-reduced, with an identity threshold based on
the distance derived in Abagyan and Batalov (1997), which corresponds to a sequence identity
of roughly 22% for long alignments, and higher for shorter ones. This set is further reduced by
excluding chains that are shorter than 30 amino acids (these often do not have well defined 3D
structures), or have resolution worse thaBi2 or result from NMR rather than X-ray experiments,

or contain non standard amino acids, or contain more than 4 contiguous Xs, or have interrupted
backbones. To extract 3D coordinates, together with secondary structure and solvent accessibility
we run the DSSP program of Kabsch and Sander (1983) on all the PDB files in thesél&x

list, excluding those for which DSSP crashes due, for instance, to missing entries or format errors.
The final set consists of 1484 proteins. To speed up training and because most comparable systems
have been developed and tested on short proteins, we further extract the subsets of all proteins of
length at most 300 containing 1269 proteins (XLARGE), and of all proteins of length at most 100
containing 533 proteins (SMALL). The SMALL subset already contains over 2.3 million pairs of
amino acids (Table 1). In the experiments reported using the SMALL set, the networks are trained
using half the data (266 sequences) and tested on the remaining half (267 sequences).

LARGE: The training and testing data sets in the LARGE sets are extracted from the PDB using a
similar protocol as above, with a slightly different redundancy reduction procedure. To avoid biases
the set is redundancy-reduced by first ordering the sequences by increasing resolution, then running
an all-against-all alignment with a 25% threshold, leading to a set containing 1070 proteins. The set
is further reduced by selecting proteins of length at most 200. This final set of 472 proteins contains
over 8 million pairs, roughly 4 times more than the SMALL set. Because contact maps strongly
depend on the selection of the distance cutoff, for all three sets we use different thresholds of 6, 8,
10 and 12, yielding four different classification tasks. The number of pairs of amino acid in each
class and each contact cutoff is given in Tables 1 and 2.

Table 1: Composition of the SMALL dataset, with number of pairs of amino acids that are separated
by less (close) or more (far) than the distance thresholds in angstroms.

6A 8A 10A 12A
Non-Contact| 2125656| 2010198| 1825934| 1602412
Contact 202427 | 317885 | 502149 | 725671
All 2328083| 2328083| 2328083| 2328083
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Table 2: Composition of the LARGE dataset, with number of pairs of amino acids that are separated
by less (contact) or more (hon-contact) than the distance thresholds in angstroms.

6A 8A 10A 12A
Non-Contact| 8161278| 7916588| 7489778| 6973959
Contact 379668 | 624358 | 1051168| 1566987
All 8540946| 8540946| 8540946| 8540946

3.2 Coarse-Grained Contact Maps

Because coarse maps are more compact-roughly two orders of magnitude smaller than the corre-
sponding fine-grained maps, it is easier in this case to exploit long proteins. Here we use the same
selection and redundancy reduction procedure used for the LARGE set to derive three data sets:
CSMALL, CMEDIUM, and CLARGE (Table 3).

CSMALL: All proteins of length at most 200 are selected identically to LARGE.

CMEDIUM: Proteins of length 300 at most are selected, for comparison with Pollastri et al. (2003),
leading to a set of 709 proteins, of which 355 are selected for training and the remaining are split
between validation and test.

CLARGE: All 1070 proteins are kept in this set, with no length cutoffs.

For all the three sets secondary structure is assigned again using the DSSP program. Two seg-
ments are defined in contact if their centers (average positiGy afoms in the segment) are closer
than 1. A different definition of contact (two segments are in contact if any Gyoare closer
than 8&) proved to be highly correlated to the first one, leading to practically identical classification
results (not shown).

Table 3: Composition of the datasets for coarse-grained contact map prediction, with number of
pairs of secondary structure segments that are separated by less (contact) or more (non-
contact) than 1A.

CSMALL | CMEDIUM | CLARGE
Non-Contact| 50186 149880 711314
Contact 22457 45667 107550
All 72643 195547 818864

4. Implementation Details

In this section, we describe the inputs that are used for the contact map predictors, the parameters

of the architectures, as well as the settings of the learning rates.
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4.1 Fine-Grained Contact Maps
4.1.1 NPUTS

In fine-grained contact map prediction, one obvious input at éaghlocation is the pair of corre-
sponding amino acids yielding two sparse binary vectors of dimension 20 with orthogonal encod-
ing. A second type of input consideration is the use of profiles and correlated mutation (Gobel et al.,
1994, Pazos et al., 1997, Olmea et al., 1999, Fariselli et al., 2001). Profiles, essentially in the form
of alignment of homologous proteins, implicitly contain evolutionary and 3D structural information
about related proteins. This information is relatively easy to collect using well-known alignment
algorithms that ignore 3D structure and can be applied to very large data sets of proteins, including
many proteins of unknown structure. The use of profiles is known to improve the prediction of
secondary structure by several percentage points, presumably because secondary structure is more
conserved than primary amino acid sequence. As in the case of secondary structure prediction, the
input can be enriched by taking the profile vectors at positi@ml j, yielding two 20-dimensional
probability vectors. We use profiles derived using the PSI-BLAST program as described in Pollastri
et al. (2001b).

When a distant paifi, j) of positions in a multiple alignment is considered, horizontal corre-
lations in the sequences may exist (“correlated mutations”) that are completely lost when profiles
with independent columns are used. These correlations can result from important 3D structural
constraints. Thus an expanded input, which retains this information, consists of a@Matrix
corresponding to the probability distribution over all pairs of amino acids observed in the two cor-
responding columns of the alignment. A typical alignment contains a few dozen sequences and
therefore in general this matrix is sparse. The unobserved entries can be set to zero or regularized
to small non-zero values using standard Dirichlet priors (Baldi and Brunak, 2001).

While this has not been attempted here, even larger inputs can be considered where correlations
are extracted not only between positianand j but also with respect to their immediate neigh-
borhoods including, for instande-1,i+1, j—1, andj+ 1. This could compensate for small
alignment errors but would rapidly lead also to intractably large inputs of siZe ®&@erek is the
size of the neighborhood considered. Compression techniques using weight sharing, coarse amino
acid classes, and/or higher-order neural networks would have to be used in conjunction with these
very expanded inputs. Other potentially relevant inputs, not used in the present simulations, include
coordination numbers and disulphide bridges.

Finally, specific structural features can also be added to each input such as the secondary struc-
ture classification and the relative solvent accessibility, a percentage indicator of whether a residue
is on the surface or buried in the hydrophobic core of a globular protein (Pollastri et al., 2001a).
These features increase the number of inputs by 10 for each pair of amino acids, five inputs for each
position @, 3,y,buried,exposed). The value of these indicators is close to exact when derived from
PDB structures, but is noisier when estimated by a secondary structure and accessibility predictor.

Previous studies (Fariselli et al., 2001) have used somewhat comparable inputs but have failed
to assess the contribution of each feature to the overall performance. To specifically address this
issue, we use inputs of sizd = 40 (just the two amino acids or the two profiles), sie= 400
(correlated profiles), as well as sidé = 410 (correlated profiles, plus the secondary structure and
relative solvent accessibility of each amino acid in the pair).
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4.1.2 ARCHITECTURES

We use a 2D DAG-RNN approach, with four hidden planes associated with four similar but indepen-
dent neural networks. In each neural network we use a single hidden lay&Hlei{resp.NOH)

denote the number of hidden units in the hidden (resp. output) layer of the neural networks associ-
ated with the hidden planes. With an input of siigethe total number of inputs to the hidden layer

of one of the four hidden networks fi§ + 2N OH when using a square lattice in each hidden plane.
Thus, including the threshods, the total number of parameters in each one of the four hidden net-
works associated with each hidden plangfigi+2NOH) x NHH+NHH+NHH x NOH+ NOH.

In the basic version of these architectures, the output network has input|sizdN OH using a

similar notation. Assuming that the output network has a single hidden layeNmi units, the

total number of parameters i§i | + 4ANOH) x NHO+NHO+ NHO+ 1including thresholds, with

a single output unit to predict contacts or distances. The number of parameters for some of the
architectures used in the simulations is reported in Table 4.

Table 4: Model architectures used in fine-grained map predichidhO = number of hidden units
in output network. NHH = number of hidden units in four hidden networkslOH =
number of output units in four hidden networks. Total number of parameters is computed
for input of size 20< 20+ 1.

Model | NHO | NHH | NOH | Parameters
8 8 8 17514
11 11 11 24609
13 13 13 29499
14 14 14 31992
15 15 15 34517

W NP

4.1.3 LEARNING AND INITIALIZATION

Training is implemented on-line, by adjusting all the weights after the complete presentation of
each protein. As shown in Figure 6, plain gradient descent on the error function (relative entropy
for contacts or least mean square for distances) seems unable to escape the large initial flat plateau
associated with this difficult problem. This effect remains even when multiple random starting
points are used. After experimentation with several variants, we use a modified form of gradient
descent where the updatey;; for a weightwi; is piecewise linear in three different ranges. In the
case, for instance, of a positive backpropagated gradignt

nx01 : ifdw; <01
Awij = ¢ nxowj : if0.1<dwj <10
n o if1.0 < dw

wheren is the learning rate, and similarly for negative gradients with the proper sign changes.
Figure 6 shows how this heuristic approach is an effective solution to the large-plateau problem.
The learning rate) is set to 0.1 divided by the number of protein examples. Prior to learning,

586



DAG-RNNS AND THE PROTEIN STRUCTURE PROBLEM

7.5 L B
|
|

Global error
o
@
T
I

=)
T
e
I

45 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Epochs

Figure 6: Example of learning curves. Blue corresponds to gradient descent. Green corresponds to
piecewise linear learning algorithm. Large initial plateau is problematic for plain gradient
descent.

the weights of each unit in the various neural networks are randomly initialized. The standard
deviations, however, are controlled in a flexible way to avoid any bias and ensure that the expected
total input into each unit is roughly in the same range.

4.2 Coarse-Grained Contact Maps

In coarse-grained contact map prediction, natural inputs to be considered at pgsiienthe
secondary structure classification of the corresponding segments, as well as the length and position
of the segments within the protein. For the length welyd® wherel is the amino acid length of

the segment. For the location we usg100, wherem represents the center of the segment in the
linear amino acid sequence. This corresponds to 5 inputs at each location. Fine-grained information
about each segment, including amino acid sequence, profile, and relative solvent accessibility may
also be relevant but need to be compressed.

One solution to this problem would be to compress the fine-grained information into a coarse-
grained representation, for example by averaging the solvent accessibility and representing amino
acid and secondary structure composition as a profile over the segment. The disadvantage of this
solution is that it discards potentially important information contained in the relative amino acid
positions. In our case, rather than compressing the fine-grained information into a coarse-grained
level representation directly, we learn an adaptive encoding from the sequence data. Specifically
we use a BRNN to model the entire protein and use the terminal output units of each segment
to encode segment properties. The BRNN takes as input the profile obtained from PSI-BLAST
multiple alignments as described in Pollastri et al. (2001b), plus secondary structure and solvent
accessibility of each residue. The outputs of the BRNN taken at the N and C terminus of each
segment are used as input for the 2D DAG-RNN. If each of these output is encoded by a vector of
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dimensionNENGC the 2D DAG-RNN used for coarse map prediction Has= 5+ 2NENCinputs

at each location. During training, the gradient for the whole compound architecture (the 2D DAG-
RNN and the underlying BRNN) is computed by backpropagation through structure. The number
of parameters in the 2D DAG-RNN architecture are computed using the same formula above except
that we must also count the number of parameters used in the BRNN encoder.

If NHEH (resp.NOEH) denotes the number of hidden units in the hidden (resp. output) layer
of the neural network associated with the hidden chains in the BRNNN&hEO (resp. NENQ
denotes the number of hidden units in the hidden (resp. output) layer of the output network of the
BRNN, the total number of parameters (e + NOEH) x NHEH+NHEH-+NHEH x NOEH+
NOEH, for the networks in the hidden chains arile| + 2NOEO) x NHEO+NHEO+NHEOx
NENC+ NENC for the output network. Herge| denotes the size of the input used in the BRNN
encoder. For example in the caseMiiH = NOH=NHO=NHEH=NOEH=NHEO= 8§,
NENC= 6 and for|le| = 24 (20 for amino acid frequencies, 3 for secondary structures, and 1 for
solvent accessibility) the total number of parameters in the BRNN is 3,568. The total number of
parameters for all the models used in the simulations is reported in Table 5. Learning rates and
algorithms are similar to to the case of fine-grained maps.

Table 5: Model architectures used in coarse-grained map predichidéhO = number of hidden
units in output network of the 2D RNNNHH = number of hidden units in four hidden
networks of the 2D RNNNOH = number of output units in four hidden networks of
the 2D RNN.NENC NHEO= number of output, hidden units of the output network of
the encoding BRNNNHEH, NOEH = number of hidden, output units of the network
associated with the chains of the encoding BRNN.

model | NHO=NHH=NOH | NHEH=NOEH=NHEO| NENC | Parameters
1 5 5 3 1585
2 6 6 4 2160
3 7 7 5 2821
4 8 8 6 3568
5 9 9 7 4401
6 10 10 8 5320
7 12 12 10 7416
8 14 14 12 9856
9 16 16 14 12640
5. Results

This section provides a sample of our simulation results. Assessing the accuracy of predicted contact
maps is not trivial for a variety of reasons. First there is an imbalance between the number of

contacts and non-contacts: for fine grained maps and small cutoffs, the number of contacts grows
roughly linearly with the length of the protein—af\ﬂne number of distant contacts is roughly half

the length of the protein and the total number of contact is about 5.5 times the length of the protein—

whereas the number of non-contacts grows quadratically. Second, contacts that are far away from
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the diagonal are more significant and more difficult to predict. Third, a prediction that is “slightly
shifted” may reflect a good prediction of the overall topology but may receive a poor score. While
better metrics for assessing contact map prediction remain to be developed, we have used here
a variety of measures to address some of these problems and to allow comparisons with results
published in the literature, especially Fariselli et al. (2001), Pollastri and Baldi (2002), Pollastri

et al. (2003). In particular we have used:

e Percentage of correctly predicted contacts and non-contacts at each threshold cutoff.

e Percentage of correctly predicted contacts and non-contacts at each threshold cutoff in an off-
diagonal band, corresponding to amino adids\d j with |i — j| > 7 for fine grained maps,
as in Fariselli et al. (2001). For coarse grained map the difference between diagonal and
off-diagonal terms is less significant.

e Precision or specificity defined by P=TP/(TP+FP).
e Recall or sensitivity defined by R=TP/(TP+FN).
e F1 measure defined by the harmonic mean of precision and recall: F1=2RP/(R+P).

e ROC (receiver operating characteristic) curves describing how y = Recall = Sensitivity = True
Positive Rate varies with x = Sensitivity = 1-Precision = 1-Specificity = False Positive Rate.
ROC curves in particular have not been used previously in a systematic way to assess contact
map predictions.

5.1 Fine-Grained Contact Maps
5.1.1 SMALLAND XLARGE SETS

Results of contact map predictions at four distance cutoffs, for a modelNithi = NHO =

NOH = 8, are provided in Table 6. In this experiment, the system is trained on half the set of
proteins of length less than 100, and tested on the other half. These results are obtained with
plain sequence inputs (amino acid pairs), i.e. without any information about profiles, correlated
mutations, or structural features. For a cutoff &, 8or instance, the system is able to recover
62.3% of contacts.

Table 6: Percentages of correct predictions for different contact cutoffs on the SMALL validation
set. Model wittNHH = NHO= NOH = 8, trained and tested on proteins of length at most
100. Inputs correspond to simple pairs of amino acids in the sequence (without profiles,
correlated profiles, or structural features).

6A | 8A | 10A | 12A
Non-Contact| 99.1 | 98.9| 97.8| 96.0
Contact 66.5| 62.3| 54.2 | 48.1
All 96.2| 93.9| 88.6| 81.0
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It is of course essential to be able to predict contact maps also for longer proteins. This can
be attempted by training the RNN architectures on larger data sets, containing long proteins. It
should be noted that because the systems we have developed can accommodate inputs of arbitrary
lengths, we can still use a system trained on short protgirs100) to produce predictions for
longer proteins. In fact, because the overwhelming majority of contacts in proteins are found at
linear distances shorter than 100 amino acids, it is reasonable to expect a decent performance from
such a system. Indeed, this is what we observe in Table 7. At a cutofh oth@ percentage of
correctly predicted contacts for all proteins of length up to 300 is still 54.5%.

Table 7: Percentages of correct predictions for different contact cutoffs on the XLARGE validation
set with proteins of length up to 300AA. Model is trained on proteins of length less than
100 (SMALL training set). Same model as in BHH = NHO = NOH = 8). Inputs
correspond to simple pairs of amino acids in the sequence.

6A | 8A | 10A | 12A
Non-Contact| 99.6 | 99.6 | 99.2 | 97.8
Contact 64.5| 54.5| 45.7 | 39.9
All 98.3| 96.8| 93.7 | 88.6

In Tables 6 and 7 results are given for a network whose outpoibtisymmetric with respect
to the diagonal since symmetry constraints are not enforced during learning. A symmetric output
is easyly derived by averaging the output values at positiorj$ and (j,i). Application of this
averaging procedure yields a small improvement in the overall prediction performance, as seen in
Table 8. A possible alternative is to enforce symmetry during the training phase.

The results of additional experiments conducted to assess the performance effects of larger in-
puts are displayed in Tables 9 and 10. When inputs of size 20 corresponding to correlated
profiles are used, the performance increases marginally by roughly 1% for contacts (for instance,
1.4% at & and 1.3% at 1@) (Table 9). When both secondary structure and relative solvent ac-
cessibility (at 25% threshold) are added to the input, however, the performance shows a remarkable
further improvement in the 3-7% range for contacts. For examplé,act@wtacts are predicted with
73.8% accuracy. The last row of Table 10 provides the standard deviations of the accuracy on a per
protein basis. These standard deviations are reasonably small so that most proteins are predicted
at levels close to the average. These results support the view that secondary structure and relative
solvent accessibility are very important for the prediction of contact maps and more useful than

Table 8: Same as Table 7 but with symmetric prediction constraints.

6A 8A 108 128

Non-Contact]  99.1 98.9 97.8 96.0
Contact | 67.3 (+0.8)] 63.1 (+0.8)| 54.9 (+0.7)| 49.0 (+0.9)
All 96.3 (+0.1)| 94.0 (+0.1)] 88.7 (+0.1)| 81.3 (+0.3)
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Table 9: Percentages of correct predictions for different contact cutoffs on the SMALL validation
set. Model wittiNHH = NHO=NOH = 8. Inputs of size 2& 20 correspond to correlated
profiles in the multiple alignments derived using the PSI-BLAST program.

6A | 8A | 10A | 12A
Non-Contact| 99.0| 98.9| 97.6 | 96.1
Contact 67.9| 63.0| 55.3 | 494
All 96.3| 94.0| 885|815

Table 10: Percentages of correct predictions for different contact cutoffs on the SMALL validation
set. Same as Table 9 but inputs include also secondary structure and relative solvent
accessibility at a threshold of 25% derived from the DSSP program. Last row represents
standard deviations on a per protein basis.

6A | 8A | 10A | 12A
Non-Contact| 99.6 | 99.5| 98.5 | 95.3
Contact 73.8| 67.9| 58.1 | 55.5
All 97.3| 95.2| 89.8 | 82.9
Std 23| 37| 59 | 85

profiles or correlated profiles. At ari8cutoff, the model still predicts over 60% of the contacts
correctly, achieving state-of-the-art performance above any previously reported results.

Table 11: Percentages of correct predictions for different contact cutoffs on the XLARGE valida-
tion set with proteins of length up to 300AA. Model is trained on proteins of length less
than 100 (SMALL training set). Inputs include primary sequence, correlated profiles,
secondary structure, and relative solvent accessibility (at 25%).

6A | 8A | 10A | 12A
Non-Contact| 99.9( 99.9| 99.3 | 95.1
Contact 70.7| 60.5| 51.3 | 49.2
All 98.8| 97.5| 94.4| 87.8

Finally a further small improvement can be derived by combining multiple predictors in an
ensemble. Results for the combination of three models Ni#H = NOH=NHO= 8, 11 and 14
are reported in Table 12. Improvements over a single model range between 0.28@fat 6.1%
for 12A. In terms of off-diagonal prediction, the sensitivity for amino acids satisfyirgj| > 7 is
0.29 at & and 0.47 at 1G, to be contrasted with 0.21 at3 reported in Fariselli et al. (2001).
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Table 12: Percentages of correct predictions for different contact cutoffs on the SMALL validation
set obtained by an ensemble of three models

Percentages of correct predictions for different contact cutoffs on the SMALL validation set ob-
tained by an ensemble of three predictdi$iH = NOH=NHO=8, NHH=NOH=NHO=11
andNHH = NOH = NHO = 14) for each distance cutoff. Inputs include correlated profiles, sec-
ondary structure, and relative solvent accessibility (at 25%).

6A 8A 10A 12A

Non-Contact 99.5 99.4 99.1 94.7

Contact 75.7 70.9 57.8 60.4
All 97.5 (+0.2)| 95.5 (+0.3)| 90.2 (+0.4)| 84.0 (+1.1)

5.1.2 LARGESET

The LARGE set is split into a training set of 424 proteins and a test set of 48 non-homologous
proteins. The training set in this case is roughly six times larger than the SMALL training set, and
contains approximately 7.7 million pairs of amino acids. Results for ensembles of models on all
the cutoffs are reported in Table 13. Performance is significantly better than for the same system
trained on the SMALL data set (Table 12). Testing directly on the LARGE dataset the ensemble
trained on the SMALL set leads to results that are 2-5% weaker than those reported in Table 13.
This supports the view that an increase in training set size around the current levels can lead to
consistent improvements in the prediction. ROC curves for the ensembles are reported in Figure 8.
In terms of off-diagonal prediction, the sensitivity for amino acids satisfyirgj| > 7 is in this

case 0.67 at8and 0.56 at 18, a strong improvement over the 0.21 abA reported in Fariselli

et al. (2001).

Table 13: Percentages of correct predictions for different contact cutoffs on the LARGE validation
set obtained by ensembles of predictors

Percentages of correct predictions for different contact cutoffs on the LARGE validation set ob-
tained by ensembles of three (at 6, 8 ané\)land five (at 1i) predictors. Models trained and
tested on the LARGE data sets. Inputs include correlated profiles, secondary structure, and relative
solvent accessibility (at 25%).

6A | 8A | 10A | 12A
Non-Contact| 99.9 | 99.8| 99.2| 98.9
Contact 71.2| 65.3| 52.2 | 46.6
All 98.5| 97.1| 93.2| 88.5

Although this is beyond the scope of this article, our experience (see also Vendruscolo et al.
(1997)) shows that the B2Znaps are the most useful for 3D reconstruction. A typical example of
contact prediction at Ris reported in Figure 7.
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Figure 7: Example of exact (bottom-left) and predicted fine contact map for protein 1IG5. Grey
scale, white=0 (non-contact), black =1 (contact).
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Fine map prediction
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Figure 8: ROC curves for the 6, 8, 10 andAl@nsembles for the prediction of fine maps, using
thresholds from 0 to 0.95 with 0.05 increments.

5.2 Coarse Contact Maps

The prediction results of ensembles of 5 models on the coarse contact map problem for the sets
CSMALL, CMEDIUM and CLARGE are shown in Tables 14 and 15, together with ROC curves

in Figure 9. The ensembles were trained with and without the underlying BRNN encoder for fine-
grained information, to check its contribution. In its absence, results are substantially similar to
those in Pollastri et al. (2003). Introducing amino-acid level information, though, causes a notice-
able improvement, roughly 10% in terms of F1 for all sets. An example of typical prediction of
coarse contact map is shown in Figure 10. As expected, overall prediction of coarse contact maps is
more accurate probably because the linear scale of long-ranged interactions is reduced by one order
of magnitude.

Table 14: Percentages of correct predictions for coarse contact maps for the 3 sets with and without
the underlying BRNN encoder.

Full model No BRNN Difference Tot
Set Contact| Non-C | Tot | Contact| Non-C | Tot
CSmall 56.8 92.0 | 81.2| 415 95.3 | 78.8 2.4
CMedium| 54.5 94.7 | 85.3| 40.6 96.3 | 83.3 2.0
ClLarge 49.0 98.6 | 92.2| 39.6 98.3 | 90.9 1.3
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Table 15: Percentages of correct predictions for coarse contact maps for the 3 sets with and without

the underlying BRNN encoder. Precision, Recall and F1 measures.

Full model No BRNN Difference F1
Precision| Recall| F1 | Precision| Recall| F1
CSmall 76.0 56.8 | 65.0 79.8 41.5 | 54.6 104
CMedium 76.0 545 | 63.5 77.2 40.6 | 53.2 10.3
ClLarge 834 49.0 | 61.7 77.3 39.6 | 52.4 9.3
Coarse map prediction
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Figure 9: ROC curves for the coarse map ensembles on the 3 different sets using thresholds from O
to 0.95 with 0.05 increments.

6. Conclusion

While RNNs are computationally powerful, so far it has been difficult to design and train RNN
architectures to address complex problems in a systematic way. The DAG-RNN approach partly
answers this challenge by providing a principled way to design complex recurrent systems that can
be trained to address real-world problems efficiently.

Unlike feedforward neural networks that can only process input vectors of fixed size, DAG-
RNNs have the ability to process data structures with graphical support that vary both in format
(sequences, trees, lattices, etc.), dimensionality (2D, 3D, etc), and size. In the case of contact maps,
for instance, the input lengtN varies with each sequence. Furthermore, it is not necessary to have
the same lengtN along each one of th dimensions so that objects of different sizes and shapes
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s

Figure 10: Example of exact (bottom-left) and predicted coarse contact map for protein INLS. Grey
scale, white=0 (non-contact), black =1 (contact).
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can also be combined and processed. Likewise, it is not necessary to have the same dimensions in
the input, hidden, and output layers, so that maps between spaces of different dimensions can be
considered. Thus we believe these architectures are suitable for processing other data, besides bio-
logical sequences, in applications as diverse as machine vision, games, and computational chemistry
(see Micheli et al. (2001)).

Because of the underlying DAG, DAG-RNNSs are related to graphical models, and to Bayesian
networks in particular. While the precise formal relationship between DAG-RNNs and Bayesian
networks will be discussed elsewhere, it should be clear that by using internal deterministic seman-
tics DAG-RNNs trade expressive power for increased speed of learning and propagation. In our
experience (Baldi et al., 1999) with protein structure prediction problems, such a tradeoff is often
worthwhile within the current computational environment.

We are currently combining the contact map predictors with a 3D reconstruction algorithm to
produce a complete predictor of protein tertiary structures that is complementary to other approaches
(Baker and Sali, 2001, Simons et al., 2001), and can be used for large-scale structural proteomic
projects. Indeed, most of the computational time in a machine learning approach is absorbed by
the training phase. Once trained, and unlike otfinitio approaches, the system can produce
predictions on a proteomic scale almost faster than proteins can fold. In this respect, predicted
coarse contact maps may prove particularly useful because of their ability to capture long-ranged
contact information that has remained so far elusive to other methods.

Finally, the six-layered DAG-RNN architectures used to process 2D contact maps may shed
some broader light on neural-style computations in multi-layered systems, including their distant
biological relatives. First, preferential directions of propagation can be used in each hidden layer to
integrate context along multiple cardinal directions. Second, the computation of each visible output
requires the computation of all hidden outputs within the corresponding column. Thus final output
converges to correct value first in the center of an output sheet, and then progressively propagates
towards its boundaries. Third, weight sharing is unlikely to be exact in a physical implementa-
tion and the effect of its fluctuations ought to be investigated. In particular, additional, but locally
limited, degrees of freedom may provide increased flexibility without substantially increasing the
risk of overfitting. Finally, in the 2D DAG-RNN architectures, lateral propagation is massive. This
stands in sharp contrast with conventional connectionist architectures, where the primary focus has
remained on the feedforward and sometimes feedback pathways, and lateral propagation used for
mere lateral inhibition or “winner-take-all” operations.
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Appendix: Architectural Remarks and Generalizations

The architectures derived in Section 2 can be extended in several directions, incrementally by en-
riching their connectivity, or more drastically by using completely different DAGs. For example,
the proof that the underlying graphs are acyclic shows immediately that connections can be added
between connected DAG components in the hidden layer as long as they do not introduce cycles.
This is trivially satisfied, for instance, if all connections run from the first hidden DAG to the second,
from the second to the third, and so forth up to the last hidden DAG. In the BRNN architectures, for
example, a sparse implementation of this idea consists in adding a connection frody eaobach

HB. Such connections however, break the symmetry of the architecture where each hidden DAG
plays the same role as the others.

In a similar vein, feedback connections from the output layer to the hidden layer can be intro-
duced selectively. In the BRNN architectures, feedback edges can be addwifmranijF for
j >1,orto anyH}3 for j < i without introducing any cycles, but not both simultaneously. In the
1D case, a translation invariant example is obtained by connecting@aotH, ;, or toHE . In
the 2-D case, feedback connections can be introduced fronOany all the nodes located, for
instance, in the NE plane and NEIde-\‘E, i.e to all the nodesi{E with k> i orl > j.

Another direction for enriching the 2D DAG-RNN architectures is to consider diagonal edges,
associated with the triangular (or hexagonal) latttice, in the hidden planes of Figure 4, and similarly
in higher dimensions¥ > 2). By doing so, the length of a diagonal path is cut by 2 in the 2D
case, and b in D dimensions, with only a moderate increase in the number of model parameters.
Additional long-range connections can be added, as in the case of higher-order Markov models of
sequences, with the same complexity caveats.

The connectivity constraints can also be varied. For instance, the weight-sharing approach
within one of the hidden DAGs can be extended across different hidden DAGSs. In the one-dimensional
isotropic BRNN case, for instance, a single neural network can be shared between the forward and
backward chains. In practice, whether any weight sharing should occur between the hidden DAGs
depends on the complexity and symmetries of the problem. Finally, DAG-RNN architectures can
be combined in modular and hierarchical ways, for instance to cover multiple levels of resolution in
an image processing problems.

More general classes of architectures are obtained by considering completely different DAGs.
In particular, it is not necessary to have nodes arrangedDndanensional square lattice. For
example, a tree architecture to process tree-structured data is depicted in Figure 11. More generally
arbitrary DAGs can be used in the hidden layer, with additional connections running from input to
hidden, input to output, and hidden to output layers. In fact, the input feeding into the hidden layers
need not be identical to the input feeding into the output layer. DAG connections within the input
and/or output layer are also possible, as well as DAG-RNN architectures with no outputs, no inputs
(e.g. HMMs), or even no inputs and no outputs (e.g. Markov chains). It is the particular regular
structure of the hidden DAGs in the models above—-lattice, trees, etc—that makes them interesting.

A DAG-RNN can be said to beomogeneous all its hidden DAGs have the same underlying
graphical structure and play a symmetric role. Itisnpleteif there is a directed path from each
input to each output. BRNNs and, more generally, the lattice RNNs with a full complemelit of 2
hidden DAGs, or the tree DAG-RNN of Figure 11 with edges oriented towards and away from the
root, are all complete.
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In the D-dimensional lattice architectures, the DAGs vary in size from one input to the next but
keep the same topology. It is also possible to consider situations where the topology of the DAG
varies with the input, as in Pollastri et al. (2003) where coarse contacts are represented directly by
edges between nodes representing secondary structure elements. In this case, NN weight sharing
can be extended across hidden DAGs that vary with each input example, as long as the indegrees of
the hidden graphs remain bounded.

O

Output Tree

2 Hidden Trees

Input Tree

Figure 11: A tree DAG-RNN.

To further formalize this point and derive general boundary conditions for DAG-RNN architec-
tures, consider connected DAGs in the hidden layer where each node has & mpsts. The
nodes that have strictly less thEninputs are called boundary nodes. In particular, every DAG has
at least one source node, with only outgoing edges, and any source node is a boundary node. For
each boundary node with< K inputs, we adK — | distinct input nodes, called frontier nodes.
For source nodes frontier nodes must be added. After this pre-processing step, the hidden DAG
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is regular in the sense that all the nodes have ex#&clilyputs, with the exception of the frontier
nodes that have become source nodes. An RNN is defined by having a neural network that is shared
among the nodes. The network has a single output vector corresponding to the activity of a node,
andK input vectors. The dimension of each input vector can vary as long as the neural network
inputs are defined unambiguously (e.g. there is a total ordering on each<setiges). The vectors
associated with the frontier nodes are set to zero, matching the dimensions properly. Propagation of
activity proceeds in forward direction from the frontier nodes towards the sink nodes that have only
incoming edges. Note that there can be multiple sink and sources (see, for instance, the case of tree
DAG-RNNSs). The fact that the graph is a DAG together with the boundary conditions ensures that
there is a consistent order of updating all the nodes. This forward order may not be unique as in the
case of 2D DAG-RNNSs, or tree DAG-RNNSs (e.g. breadth first versus depth-first).
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