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(Extended Abstract)

Abstract. Residue contact maps are bi-dimensional data structures
that encode the three-dimensional structure of a protein by storing the
presence of contacts among protein backbone residues. Contact maps
have a key role in most state-of-the-art protein structure prediction
pipelines, i.e. the prediction of three dimensional space conformation of
aminoacids composing the proteins. We have designed a system (XXStout-
beta) for the prediction of residue contact maps from the sequence of
amino acids composing the protein. The system is based on Recursive
Neural Networks, which are capable of learning an input-output mapping
from sets of examples. Moreover data structures and loading/unloading
algorithms have been designed for efficiently managing contact maps in
primary and secondary memory. XXStout-beta has performed well at the
latest CASP9 world-wide protein structure prediction competition, and
is integrated in the public, high-throughput structure prediction server
Distill3. In this paper we present informally results of XXStout-beta in
CASP9 competition.

1 Contact Map prediction

In Nature, the process of protein folding is observed when a protein is synthe-
sized in the cell. Although many factors may facilitate the folding process, the
shape of a protein, with only limited exceptions is directly determined by its
amino acid sequence, i.e. one can assume that the map between the sequence
and the structure is a function. Finding this function is the so called Protein
Folding Problem (PFP). PFP has been an hot topic for decades among a vast
community of scientists. This has been tackled in various ways, ranging from
physical simulations to knowledge-based methods such as machine learning. In
the latter case one needs to observe a (sufficiently large) number of known pro-
tein structures and try to understand/learn the laws behind the folding process,
or more simply the map between sequences and structure, either in part (e.g. se-
quence to secondary structure) or as a whole. Solving the PFP computationally

3 http://distill.ucd.ie/distill/



is appealing, as experimental determination of the structure is a complex, time-
consuming and expensive process, and as a consequence as of 2011 we only know
the structures of approximately 70,000 proteins, or approximately one every 200
proteins for which we have revealed the sequence.

Every two years the CASP experiment challenges computational folding
methods to predict the (then unknown) structure of several tens of proteins.
Among other categories, CASP assesses the prediction of protein residue contact
maps, i.e. the set of mutual distances between residues in a protein, quantised
into two states (contact, for distances smaller than a threshold, and non-contact
otherwise).

Correct contact maps have been shown to be lead to reasonably good 3D
structures [5, 6], and predicted contact maps have been used for driving protein
folding in the ab initio case (that is, when a protein is folded without relying
on homology to another protein of known structure), for selecting and ranking
folded protein models, for predicting folding times, protein domain boundaries,
secondary structure, etc.

We have designed a novel predictor of protein residue contact maps. The pre-
dictor exploits a diverse, complex set of inputs, including the residue sequence,
evolutionary information in the form of a profile of residue frequencies extracted
from a multiple sequence alignment of homologous proteins (of unknown struc-
ture), predicted secondary structure, solvent accessibility and contact density
and, most importantly, near and remote structural templates (when available)
obtained by various methods. The predictor has two types of outputs: a simple
contact/non-contact binary classification (as per CASP rules); a 4-class distance
map. The latter output is used as a constraint to reconstruct 3-dimensional
protein structures.

2 Neural Networks for Prediction

2.1 Methods

We predict contact and distance maps by 2D-RNNs (two-dimensional Recursive
Neural Networks), which were previously described in [14] and [15]. This is a
family of adaptive models for mapping two-dimensional matrices of variable size
into matrices of the same size.

If oj,k is the entry in the j-th row and k-th column of the output matrix, and
ij,k is the input in the same position, the input-output mapping is modelled as:
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where h
(n)
j,k for n = 1, . . . , 4 are planes of hidden vectors transmitting contex-

tual information from each corner of the matrix to the opposite corner. We
parametrise the output update, and the four lateral update functions (respec-
tively N (O) and N (n) for n = 1, . . . , 4) using five two-layered feed-forward neural
networks, as in [15]. Stationarity is assumed for all residue pairs (j, k), that is the
same parameters are used across all j = 1, ..., N and k = 1, ..., N . Each of the 5
neural network contains its own individual parameters, that are not constrained
to the ones of the other networks.

Since we are trying to predict both a 4-class map and a binary map, we
model both classification problems within the same 2D-RNN. Hence the output
oj,k will have two components:

oj,k = (o
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j,k , o
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where o
(4)
j,k is a vector of four numbers representing the estimated probabilities

of residues j and k belonging to each of the four distance classes, and o
(2)
j,k is the

same for the two binary (contact vs. non-contact) classes. Both components are
implemented by (independent) softmax units.

As modelled in the input-output mapping equations above, we use 2D-RNNs
with shortcut connections. This means that a memory state depends explicitly
on more that the memory state immediately previous to it along the direction of
contextual propagation, i.e. the memory span is greater than one. This is effec-
tive because gradient-based learning in deep layered architectures suffers from
the well known vanishing gradient problem [18]. Allowing shortcuts of length S
(i.e. the memory state in position i depends directly on the state in position i−S)
creates new paths of roughly 1/S of the length of the ones induced by 1-step
memory dependencies, thus facilitating the transmission of contextual informa-
tion over larger distances. Indeed, shortcut connections can be placed starting
at any of the previous states i − s for any s ∈ 1, .., S. A selective placement of
shortcuts was used to produce near perfect secondary structure predictions in a
bidirectional recurrent neural network when (i, s) represent native contacts [16].
Notice that increasing the number of shortcuts increases the parameters result-
ing in a model that may more easily overfit the data. Extending the shortcut idea
beyond the 2D case or in any direction of contextual propagation is straightfor-
ward. Shortcut directions and patterns are not strictly constrained (so long as
cycles are not introduced in the directed graph representing the network) and
may even be learned.

The choice of input ij,k is an important factor for the algorithm. In the case
of contact map prediction the simplest input is the amino acid symbols at (j, k).
Different input encodings can be constructed to improve the algorithm. In the
Input Design section we describe the input encoding we used in this study.



Training Learning proceeds by gradient descent by minimising the relative
cross entropy between target and output. Since there are two independent output
components (a 4-class and a binary one), the error is in fact the sum of two cross
entropies, which are weighed equally. Careful management of the gradient must
take place, not letting it be too small or too large: the absolute value of each
component of the gradient is kept within the [0.1,1] range, meaning that it is set
to 0.1 if it is smaller than 0.1, and to 1 if it is greater than 1. The learning rate
is set to 0.0375 divided by the the total number of proteins in the dataset. The
weights of the networks are initialised randomly.

Input format Input ij,k associated with the j-th and k-th residue pair contains
primary sequence information, evolutionary information, structural information,
and direct contact information derived from the PDB templates:
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where, assuming that e units are devoted to evolutionary sequence information
and structural information in the form of secondary structure[11, 10], solvent
accessibility [11] and contact density [13]:
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Template information is placed in the remaining t units:
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Hence ij,k contains a total of e+ t components.
In this work e = 58. 20+20 units correspond to the frequencies of residues ob-

served in the two columns j and k of the multiple sequence alignment. Structural
information in the form of secondary structure (three classes), solvent accessi-
bility (two classes), and contact density (four classes) for residue j and k are
placed in the remaining 6,4 and 8 input units respectively.

For the template units we use t = 5, representing weighted contact class

information from the templates and one template quality unit. Assume that d
(p)
j,k

is a 4-component binary vector encoding the contact class of the (j,k)-th residue
pair in the p-th template. Then, if P is the total number of templates for a
protein:
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where wp is the weight attributed to the p-th template. If the sequence identity
between template p and the query is idp and the quality of a template (measured
as X-ray resolution + R-factor/20 or 10 for NMR hits, as in [9]) is qs, then the
weight is defined as:

wp = qpid
3
p (5)



Taking the cube of the identity between template and query allows us to dras-
tically reduce the contribution of low-similarity templates when good templates
are available. For instance a 90% identity template is weighed two orders of
magnitude more than a 20% one. In preliminary tests (not shown) this measure
performed better than a number of alternatives.

The final unit of ij,k, the quality unit, encodes the weighted average coverage
and similarity of a column of the template profile as follows:

i
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where cp is the coverage of the sequence by template p (i.e. the fraction of non-
gaps in the alignment). Encoding template information for the binary maps is
similar.

Ab initio based predictions use only the first part of the input, i
(E)
j,k from

equation 2, including secondary structure, solvent accessibility and contact den-
sity, although these are predicted ab initio. The template based predictions use
the complete ij,k as input.

2.2 Data

We use two datasets to train our predictors. The first set (D1) is obtained from
the January 2007 25% pdb select list [9]. After processing and selection of pro-
teins no longer than 200 residues, D1 contains 2,452 proteins (and 70 million
residue pairs), which we divide into a training set of 1,978 instances, and a test
set of 474. The dataset is further processed to generate maps between Cβ atoms.
We only use this dataset to predict binary Cβ maps with a 8Å threshold, as per
CASP rules. The second set is obtained from the October 2009 25% pdb select
list, containing 4,818 proteins, which become 3,645 (over 100 million residue
pairs) after processing and selection of sequences no longer than 200 residues.
This second set, in which Cα distances are taken into account, is split into 5
approximately equal parts and 5-fold cross validation trainings are run on it in
two settings: prediction of 4-class distance maps without structural homologues
(templates) as inputs, or free-modelling setting (FM); including templates, or
template-based modelling setting (TBM).

For CASP9 contact map predictions we ensemble 15 models from 5 different
trainings (with different structural parameters, such as shortcut lengths) on D1.
The models trained on D2 feed into our 3D predictor Distill [13].

3 Experimental results

The trained systems, set up as web servers, took part to the CASP9 world-
wide competition. Overall results of top participating servers for contact map
prediction are reported in Table 1, during the CASP9 conference held in Asilo-
mar, California in December 2010 and are available at [19]. According to the



Server Group N Targets Z score Metapredictor

MULTICOM-CLUSTER 2 25 1.258

Infobiotics 51 28 1.073

Distill 214 28 0.880

SAM-T08-server 103 28 0.840

ProC S1 375 25 0.740 n.a.

MULTICOM-REFINE 119 26 0.674

PSICON 422 28 0.628 n.a.

SMEG-CCP 391 27 2.391 yes

MULTICOM 490 27 2.388 yes

ProC S3 138 24 1.011 yes

MULTICOM-CONSTRUCT 80 26 0.776 yes

SAM-T06-server 244 25 0.678 yes

Table 1. The top 12 groups partecipating at the IX edition of CASP 2010 in the
contact prediction category, from the official CASP assessment.

official assessment our system was one of the top three standalone predictors,
and the second best that submitted all the proteins that were considered in the
evaluation. The Z score value for Distill with XXStout-beta server has been cal-
culated and evaluated in 0.880. The Z score is a standard performance measure
for protein structure prediction.
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