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Abstract

Automatically mapping small, drug-like molecules into their biological
activity is an open problem in chemioinformatics. Numerous approaches
to solve the problem have been attempted, which typically rely on different
machine learning tools and, critically, depend on the how a molecule is
represented (be it as a one-dimensional string, a two-dimensional graph,
its three-dimensional structure, or a feature vector of some kind). In fact
arguably the most critical bottleneck in the process is how to encode the
molecule in a way that is both informative and can be dealt with by the
machine learning algorithms downstream.

Recently we have introduced an algorithm which entirely does away
with this complex, error-prone and time-consuming encoding step by au-
tomatically finding an optimal code for a molecule represented as a two-
dimensional graph. In this report we introduce a model which we have re-
cently developed (Neural Network Pairwise Interaction Fields) to extend
this same approach to molecules represented as their three-dimensional
structures. We benchmark the algorithm on a number of public data sets.
While our tests confirm that three-dimensional representations are gen-
erally less informative than two-dimensional ones (possibly because the
former are generally the result of a prediction process, and as such con-
tain noise), the algorithm we introduce compares well with the state of the
art in 3D-based prediction, in spite of not requiring any prior knowledge
about the domain, or prior encoding of the molecule.



Background

Over the last few decades numerous methods have been developed to perform
virtual screening of chemical compounds. Most of these methods belong to the
broad category of QSAR (Quantitative Structure-Activity Relationship). The
aim of QSAR is to find an appropriate function F (), which, given a structured
representation of a molecule, predicts its biological activity [25]. QSAR’s most
general form is:

Activity = F (structure) (1)

The definition of function F () is a complex task which can be factorized into
two sub-problems: the encoding problem and the mapping problem. The former
refers to the task of mapping a molecule, which is naturally described as an
undirected graph representing its chemical structure, into an array of features.
This step is necessary in order to obtain a representation which is suitable for
standard regression/classification tools like Artificial Neural Networks (ANN)
or Support Vector Machines (SVM). The latter consists in mapping the array of
features into the property of interest and, as mentioned, is generally a regression
or a classification task, which may be tackled by one of numerous algorithmic
tools that are available. According to this view, F () can be decomposed as
follows [25]:

F () = g(t()) (2)

where t() is the encoding function and g() is the mapping function. The way t()
is defined is rather open-ended and ultimately one could argue that the essence
of the problem is precisely finding t() or, equivalently, that once an informative
t() is found for the problem at hand, the following step is trivial. In most cases
t() is hand-crafted and requires the intervention of experts. If this is the case,
finding t() is usually time consuming and, given that even experts may fail, or
overlook, may lead to the loss of important information to predict the desired
target. In [8, 12] and [9] a similar approach is followed to predict acqueous
solubility by a Multi Layer Perceptron (MLP) and SVM, respectively. In [14]
a large set of molecular features, including physical and graphical properties,
is compressed by Principal Component Analysis (PCA) to be the input to an
ANN, with the aim of predicting melting points. In [6] numeric codes for alkanes
are applied to provide an input for an MLP in order to predict melting points
and in [5] a set of 2D and 3D molecular descriptors for each molecule is calcu-
lated, to predict melting points using a method based on partial least squares
Projection to Latent Structures (PLS). Among all current state-of-the-art au-
tomated methods (i.e., where the function t() is defined by a fully automated
computational process), one of special interest is represented by N-Dimensional
Kernels as described in Azencott et al.[2]. In particular, when the number of
examples in the training set is large enough (greater than 1000), 2D spectral
kernels proved to yield robust results, generally better than 3D kernels.
Another interesting class of methods is represented by the UG-RNN models
developed by Lusci et al.[15]. The latter proved to match and in some cases
outperform the generalization capability of state of the art Kernels. Unlike
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Figure 1: NN-PIF Model of a molecular graph containing N nodes

other methods, UG-RNN is based on a training algorithm where the extraction
of molecular features is property driven, i.e. the input label does not consist in
a set of pre-computed features.
Here we apply a method based on the algorithm by Martin et al.[17]. The
method is called Neural Network Pairwise Interaction Fields. NN-PIF is char-
acterized by a training process where the extraction of molecular features is
property driven but, unlike UG-RNN, it relies on 3D molecular graphs. We
tested the method on three different standard benchmarks and compared its
results with those obtained by a number of state-of-the-art approaches.

Methods

The proposed method is based on the NN-PIF algorithm developed by Martin
et al.[17] for protein model quality assessment and ab initio protein folding,
and part of a suite of machine learning methods for structured data which we
have developed to deal with the prediction of protein structure and function
[3, 22, 4, 23, 20, 27, 19, 28, 21, 16, 26, 15, 18]. The input is the 3D graph of
a molecule. The output is a property which is assumed to be predictable from
the 3D graph. The idea underpinning the algorithm is based on the observation
that: each node (i.e. atom) in the graph interacts with its neighbours; the type
of interaction depends on the atom types and atomic distances (including where
covalent bonds are present). Here we map the interaction between each couple
of atoms i and j to a hidden state Xi,j , through a function F () that takes the
atom labels ai and aj and the distance between atoms di,j as input.

Xi,j = F (ai, aj , di,j) (3)
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Table 1: Architecture of 10 encoding neural networks NF and output neural
networks NG

NeuralNetwork NF

Hidden
Units

NF

Output
Units

NG

Hidden
Units

Model 1 10 3 7
Model 2 10 4 7
Model 3 10 5 7
Model 4 10 6 7
Model 5 10 7 7
Model 6 10 8 7
Model 7 10 9 7
Model 8 10 10 7
Model 9 10 11 7
Model 10 10 12 7

The function F () is implemented by a feed-forward neural network NF with
a single hidden layer with hyperbolic tangent outputs. The hidden states are
then combined together for each interaction, yielding a hidden vector Y for the
whole molecule:

Y = K
∑
i 6=j

Xij (4)

Thus Y is a feature vector encoding the properties of the whole 3D graph (see
1). The hidden vector Y is then mapped into a single output, which represents
a single property for the whole structure:

O = G(Y ) (5)

We implement G() as a feed-forward neural network NG with one hidden layer
and a sigmoidal (hyperbolic tangent) output. The functions F () and G() are
assumed to be stationary, hence the same network NF is replicated for all the
interactions, and the same network NG is replicated for all conformations. The
overall NN-PIF architecture is trained by gradient descent. The error used is
the squared difference between the network output and the desired property.
The gradient can be easily computed in closed form, via a version the back-
propagation algorithm, as the overall graph does not contain cycles.

NNPIF configuration and training

As mentioned, both NF and NG are modelled by neural networks, both of
which contain one hidden layer. All neurons use a sigmoid transfer function
(tanh ) and weights are randomly initialized. In order to reduce the residual
generalization error[11], we use an ensemble of 10 models with different numbers
of hidden units as described in 1.
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We trained our NN-PIF models for 30000 epochs with a fixed learning rate
η = 0.001. In order to speed up the learning process[24], we include a momentum
term in the training routine. The resulting weights update rule at step e is:

∆w(e) = ∆w(e)−m∆w(e− 1) (6)

We chose m = 0.9. The outputs of the best 10 networks, selected by their Root
Mean Square Error (RMSE) on the validation set, are averaged as an ensemble
to compute the prediction on the test set, on each fold of the 10-fold cross
validation procedure.

Data

To train and test the NN-PIF we use three publicly available benchmark datasets
widely used in the solubility prediction literature. The following datasets do not
include 3D coordinates, therefore we used Marvin Beans[1] to predict them. As
we discuss later, this is a potential source of noise.

Small Delaney Dataset

This dataset[8] originally contained 2874 molecules together with their mea-
sured aqueous solubility (logmol/L at 25 ◦C). This dataset is particularly in-
teresting because it can be used as a benchmark for comparisons against the
GSE method[13]. As described in Delaney[8], the GSE was obtained from a
set of molecules similar to the ones contained in the ”Small” Delaney Dataset.
Furthermore, various kernel methods[2] have also been trained and tested on
this dataset with better results than GSE.

Huuskonen

This dataset contains 1026 organic molecules selected by Jarmo Huuskonen[12]
from the AQUASOL dATAbASE[29] and the PHYSPROP Database[7]. Molecules
are listed together with their aqueous solubility values, expressed in logmol/L
at 20-25◦. For instance, Frohlich et al.[10] report a squared correlation coeffi-
cient of 0.90 for an 8-fold cross-validation, using support vector machines with
a RBF (Radial Basis Function) kernel.

Karthikeyan

The dataset consists of 4173 compounds annotated with melting points in de-
grees Celsius and a wide range of additional properties[14]. In our tests we
limit the molecular target to the melting point. The latter is a fundamental
physiochemical property of a molecule that depends on both single-molecule
properties and intermolecular interactions due to packing in the solid state.
Karthikeyan[14] found that models based on 2D descriptors contain more rele-
vant information than 3D descriptors.
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Table 2: Prediction performances and standard deviations using 10-fold cross
validation on the Small Delaney Dataset (1144 molecules)

Models R2 std R2 RMSE std RMSE AAE std AAE
NN-PIF 0.89 0.03 0.70 0.09 0.53 0.05
UG-RNN[15] 0.92 0.02 0.58 0.07 0.43 0.04
UG-RNN-CR[15] 0.86 0.03 0.79 0.09 0.57 0.06
UG-RNN+LogP[15] 0.91 0.02 0.61 0.07 0.46 0.05
UG-RNN-CR+LogP[15] 0.91 0.02 0.63 0.05 0.47 0.03
GSE[13] - - - - 0.47 -
2D Kernel (param d=2)[2] 0.91 - 0.61 - 0.44 -
3D Delaunay[2] 0.88 - 0.72 - 0.51 -
3D Histogram + Gaussian[2] 0.91 - 0.63 - 0.45 -

Results

Metrics

In order to assess the performance of the NN-PIF predictors and compare them
with other methods, we use three standard metrics: the root mean square er-
ror (RMSE), the average absolute error (AAE), and the Pearson correlation
coefficient (R) defined by

RMSE =

√√√√ 1

n

i∑
i=1

(ti − pi)2 (7)

AAE =
1

n

n∑
i=1

|ti − pi| (8)

R =

∑n
i=1(ti − t̄)(pi − p̄)√∑n

i=1(ti − t̄)2
√∑n

i=1(pi − p̄)2
(9)

Here pi is the predicted value and ti is the target value (experimentally observed)
for molecule i. We use R2 instead of R as our error metric in order to compare
our results with other published results. In the tables, for clarity purposes the
best results are marked in bold.

Results obtained by 10-fold cross validation on the Small Delaney Dataset are
shown in Table 2. NN-PIF performs slightly worse than 2D based methods and
3D histogram + Gaussian but matches the results obtained with 3D Delunay.

Results obtained by 10-fold cross validation on the Huuskonen dataset are
shown in Table 3. NN-PIF matches the perfomances of both 2D and 3D based
methods and outperforms the results obtained with 3D Delunay.

Results obtained by 10-fold cross validation on the Karthikeyan dataset are
shown in Table 4. NN-PIF performs worse than 2D based methods. However
it matches the performances of 3D Delunay and outperforms 3D Histogram +
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Table 3: Prediction performances and standard deviations using 10-fold cross
validation on the Huuskonen Dataset (1026 molecules)

Models R2 std R2 RMSE std RMSE AAE sdt AAE
NNPIF 0.90 0.01 0.65 0.06 0.49 0.04
UG-RNN[15] 0.91 0.01 0.60 0.06 0.46 0.04
UG-RNN-CR[15] 0.80 0.04 0.92 0.07 0.65 0.05
UGR-NN+LogP[15] 0.91 0.01 0.61 0.06 0.47 0.04
UG-RNN-CR+LogP[15] 0.89 0.02 0.68 0.06 0.52 0.04
3D Delaunay[2] 0.88 - - - - -
3D histogram[2] + Gaussian 0.91 - - - - -
RBF Kernel[10] 0.90 - - - - -

Table 4: Prediction performance in 10 fold cross validation on Karthikeyan
Dataset (4173 compounds)

Models R2 std R2 RMSE std RMSE AAE sdt AAE
NNPIF 0.49 0.04 45.92 1.86 35.9 1.34
UGRNN[16] 0.56 - 42.6 - 33.2 -
2D Kernel[2] 0.56 - 42.71 - 32.58 -
3D Delaunay[2] 0.50 - 46.62 - 35.01 -
3D histogram + Gaussian[2] 0.27 - 55.01 - 43.38 -
Karthikeyan 2D[14] 0.44 - 49.3 - 38.2 -
Karthikeyan 3D[14] 0.30 - 55.5 - 45.6 -
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Gaussian. Moreover, it is important to notice that NN-PIF outperforms both
Karthikeyan 2D and Karthikeyan 3D.

Discussion

Our tests show that NN-PIF generally matches, though seldom outpermorms,
the perfomances of other 3D based predictors but obtains generally worse results
than 2D based predictors (with the only exception of Karthikeyan 2D). This is
in agreement with the findings of Azencott et al.[2] and Karthikeyan[14]. The
latter does not provide an explanation, simply reporting that calculated 3D
descriptors contain less relevant information than 2D descriptors. On the other
hand, Azencott et al. observe that the 3D structures of the molecules, which
are required to build the predictive models, are not present in the data sets,
nor is any information about stereochemistry. The coordinates of the atoms in
these structures are predicted and this is likely to introduce errors that affect
the performance of molecular property predictors. As far as we know, this is the
most likely explanation. Finally, it is important to notice how NN-PIF, which
are based on a very simple algorithm that automatically extracts features from
the 3D molecular graph, outperform classifiers that use sets of pre-computed
descriptors as in Kathikeyan[14]. This is further proof that methods based
on a target-driven training process (like UG-RNN[15] for example) show good
generalization capabilities with the advantage of reducing drastically the time
required by the feature selection step.
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